Merge branch 'master' of github.com:ice-bit/iceOS

This commit is contained in:
ice-bit 2019-09-27 00:49:24 +02:00
commit ea8be7f510
19 changed files with 383 additions and 701 deletions

View File

@ -1,7 +1,7 @@
LD = i686-elf-ld
LFLAGS = -melf_i386 -nostdlib -O2 -T link.ld
all: prepare cpu kernel_code drivers libc shell link iso
all: prepare cpu kernel_code drivers libc shell mem link iso
prepare:
mkdir -p obj/
@ -28,6 +28,10 @@ shell:
make -C kernel/shell
cp kernel/shell/*.o obj/
mem:
make -C kernel/mem
cp kernel/mem/*.o obj/
link:
$(LD) $(LFLAGS) -o isodir/boot/iceOS.bin obj/*.o

View File

@ -1,14 +1,8 @@
OBJS = multiboot.asm.o kernel_loader.asm.o ports.asm.o \
gdt.asm.o idt.asm.o interrupts.asm.o assert.o
gdt.asm.o idt.asm.o interrupts.asm.o
ASM = nasm
ASMFLAGS = -f elf
CC = i686-elf-gcc # cross-compiler
CFLAGS = -m32 -fno-stack-protector -ffreestanding -Wall -Wextra -Werror -g -c
all: $(OBJS)
%.asm.o: %.asm
$(ASM) $(ASMFLAGS) $< -o $@
%.o: %.c
$(CC) $(CFLAGS) $< -o $@
$(ASM) $(ASMFLAGS) $< -o $@

View File

@ -1,5 +1,5 @@
OBJS = tty.o gdt.o idt.o isr.o timer.o keyboard.o \
fs.o ordered_list.o kheap.o paging.o
fs.o
CC = i686-elf-gcc # cross-compiler
CFLAGS = -m32 -fno-stack-protector -ffreestanding -Wall -Wextra -Werror -g -c

View File

@ -1,320 +0,0 @@
#include "kheap.h"
// end is declared in the linker script
extern uint32_t end;
extern page_directory_t *kernel_directory;
uint32_t placement_addr = (uint32_t)&end;
heap_t *kheap = 0;
uint32_t kmalloc_int(uint32_t sz, int32_t align, uint32_t *phys) {
if(kheap != 0) {
void *addr = alloc(sz, (uint8_t)align, kheap);
if(phys != 0) {
page_t *page = get_page((uint32_t)addr, 0, kernel_directory);
*phys = (page->frame*0x1000 + (uint32_t)addr)&0xFFF;
}
return (uint32_t)addr;
} else {
if(align == 1 && (placement_addr & 0xFFFFF000)) {
// Align
placement_addr &= 0xFFFFF000;
placement_addr += 0x1000;
}
if(phys)
*phys = placement_addr;
uint32_t tmp = placement_addr;
placement_addr += sz;
return tmp;
}
}
void kfree(void *p) {
free(p, kheap);
}
uint32_t kmalloc_a(uint32_t sz) {
return kmalloc_int(sz, 1, 0);
}
uint32_t kmalloc_p(uint32_t sz, uint32_t *phys) {
return kmalloc_int(sz, 0, phys);
}
uint32_t kmalloc_ap(uint32_t sz, uint32_t *phys) {
return kmalloc_int(sz, 1, phys);
}
uint32_t kmalloc(uint32_t sz) {
return kmalloc_int(sz, 0, 0);
}
/* The following function is a simple method to find the smallest hole that
* fit user space request, since we will do this process many times, it's a good
* idea to wrap it in a function */
static int32_t find_smallest_hole(uint32_t size, uint8_t page_align, heap_t *heap) {
uint32_t i = 0;
while(i < heap->index.size) {
header_t *header = (header_t*)lookup_ordered_list(i, &heap->index);
if(page_align > 0) {
uint32_t loc = (uint32_t)header;
int32_t offset = 0;
if(((loc+sizeof(header_t)) & 0xFFFFF000) != 0) // Page aligned memory
offset = 0x1000 - (loc+sizeof(header_t))%0x1000;
int32_t hole_size = (int32_t)header->size - offset;
if(hole_size >= (int32_t)size)
break;
} else if(header->size >= size)
break;
i++;
}
// Return something according to the iterator
if(i == heap->index.size)
return -1; // Nothing found
else
return i;
}
static int8_t header_t_less_than(void *a, void *b) {
return (((header_t*)a)->size < ((header_t*)b)->size)?1:0;
}
heap_t *create_heap(uint32_t start, uint32_t end, uint32_t max, uint8_t supervisor, uint8_t readonly) {
heap_t *heap = (heap_t*)kmalloc(sizeof(heap_t));
ASSERT(start%0x1000 == 0);
ASSERT(end%0x1000 == 0);
// Init heap's index
heap->index = place_ordered_list((void*)start, HEAP_INDEX_SIZE, &header_t_less_than);
// Shift start address to the corrent position, where we can put on data
start += sizeof(type_t)*HEAP_INDEX_SIZE;
// Check if start address is page-aligned
if((start & 0xFFFFF000) != 0) {
start &= 0xFFFFF000;
start += 0x1000;
}
// Fill the heap structure with start, end and max addresses
heap->start_address = start;
heap->end_address = end;
heap->max_address = max;
heap->supervisor = supervisor;
heap->readonly = readonly;
// Let's create one large hole in the new index
header_t *hole = (header_t*)start;
hole->size = end-start;
hole->magic = HEAP_MAGIC;
hole->is_hole = 1;
insert_ordered_list((void*)hole, &heap->index);
return heap;
}
static void expand(uint32_t new_size, heap_t *heap) {
// Before anything else let's check that new size is greater than older one
ASSERT(new_size > heap->end_address - heap->start_address);
if((new_size&0xFFFFF000) != 0) {
new_size &= 0xFFFFF000;
new_size += 0x1000;
}
// Check if new size is not greater than maximum size
ASSERT(heap->start_address+new_size <= heap->max_address);
uint32_t old_size = heap->end_address-heap->start_address;
uint32_t i = old_size;
while(i < new_size) {
alloc_frame(get_page(heap->start_address+i, 1, kernel_directory),
(heap->supervisor)?1:0, (heap->readonly)?0:1);
i += 0x1000; // pAge size
}
heap->end_address = heap->start_address+new_size;
}
static uint32_t contract(uint32_t new_size, heap_t *heap) {
// This function will be literally the opposite of the previous one
ASSERT(new_size < heap->end_address-heap->start_address);
if(new_size&0x1000) {
new_size &= 0x1000;
new_size += 0x1000;
}
if(new_size < HEAP_MIN_SIZE)
new_size = HEAP_MIN_SIZE;
uint32_t old_size = heap->end_address-heap->start_address;
uint32_t i = old_size - 0x1000;
while(new_size < i) {
free_frame(get_page(heap->start_address+i, 0, kernel_directory));
i -= 0x1000;
}
heap->end_address = heap->start_address + new_size;
return new_size;
}
void *alloc(uint32_t size, uint8_t page_align, heap_t *heap) {
uint32_t new_size = size + sizeof(header_t) + sizeof(footer_t);
uint32_t i = find_smallest_hole(new_size, page_align, heap);
// Error checking for "no hole available"
if((int32_t)i == -1) {
// Save previous data
uint32_t old_len = heap->end_address - heap->start_address;
uint32_t old_end_addr = heap->end_address;
// Allocate more space
expand(old_len+new_size, heap);
uint32_t new_len = heap->end_address-heap->start_address;
i = 0; // Endmost header in location
uint32_t idx = -1; // Endmost header's index
uint32_t value = 0x0; // Endmost header's value
while(i < heap->index.size) {
uint32_t tmp = (uint32_t)lookup_ordered_list(i, &heap->index);
if(tmp > value) {
value = tmp;
idx = i;
}
i++;
}
// In case we did not find any headers, we need to add one
if((int32_t)idx == -1) {
header_t *head = (header_t*)old_end_addr;
head->magic = HEAP_MAGIC;
head->size = new_len - old_len;
head->is_hole = 1;
footer_t *foot = (footer_t*) (old_end_addr + head->size - sizeof(footer_t));
foot->magic = HEAP_MAGIC;
foot->header = head;
insert_ordered_list((void*)head, &heap->index);
} else {
header_t *head = lookup_ordered_list(idx, &heap->index);
head->size += new_len - old_len;
// Rewrite the footer
footer_t *foot = (footer_t*) ((uint32_t)head + head->size - sizeof(footer_t));
foot->header = head;
foot->magic = HEAP_MAGIC;
}
// Now that we have enough space, use recursing to call this function again
return alloc(size, page_align, heap);
}
header_t *origin_hole_header = (header_t*)lookup_ordered_list(i, &heap->index);
uint32_t origin_hole_p = (uint32_t)origin_hole_header;
uint32_t origin_hole_s = origin_hole_header->size;
// Now check if we should split the hole into two parts
if(origin_hole_s-new_size < sizeof(header_t)+sizeof(header_t)) {
size += origin_hole_s-new_size;
new_size = origin_hole_s;
}
// Now check if we need page-aligned data
if(page_align && origin_hole_p&0xFFFFF000) {
uint32_t new_location = origin_hole_p + 0x1000 - (origin_hole_p&0xFFF) - sizeof(header_t);
header_t *hole_header = (header_t*)origin_hole_p;
hole_header->size -= 0x1000 - (origin_hole_p&0xFFF) - sizeof(header_t);
hole_header->magic = HEAP_MAGIC;
hole_header->is_hole = 1;
footer_t *hole_footer = (footer_t*) ((uint32_t)new_location - sizeof(footer_t));
hole_footer->magic = HEAP_MAGIC;
hole_footer->header = hole_header;
origin_hole_p = new_location;
origin_hole_s = origin_hole_s - hole_header->size;
} else // Otherwise delete this hole from the index since we don't need it anymore
remove_ordered_list(i, &heap->index);
// Since we're creating a new hole at the old hole's address we can reuse the old hole
header_t *block_header = (header_t*)origin_hole_p;
block_header->magic = HEAP_MAGIC;
block_header->is_hole = 0;
block_header->size = new_size;
// Now overwrite original footer
footer_t *block_footer = (footer_t*)(origin_hole_p + sizeof(header_t) + size);
block_footer->magic = HEAP_MAGIC;
block_footer->header = block_header;
// If the new block have positive size, then write a new hole after new block
if(origin_hole_s - new_size > 0) {
header_t *hole_head = (header_t*)(origin_hole_p + sizeof(header_t) + size + sizeof(footer_t));
hole_head->magic = HEAP_MAGIC;
hole_head->is_hole = 1;
hole_head->size = origin_hole_s - (new_size);
footer_t *hole_foot = (footer_t*)((uint32_t)hole_head + origin_hole_s - new_size - sizeof(footer_t));
if((uint32_t)hole_foot < heap->end_address) {
hole_foot->magic = HEAP_MAGIC;
hole_foot->header = hole_head;
}
insert_ordered_list((void*)hole_head, &heap->index);
}
// Finally, return the new hole
return (void*)((uint32_t)block_header+sizeof(header_t));
}
void free(void *p, heap_t *heap) {
// Exit for null pointer
if(p == 0)
return;
// Retrieve the header and the footer for this pointer
header_t *head = (header_t*) ((uint32_t)p - sizeof(header_t));
footer_t *foot = (footer_t*) ((uint32_t)head + head->size - sizeof(footer_t));
ASSERT(head->magic == HEAP_MAGIC);
ASSERT(foot->magic == HEAP_MAGIC);
// Set hole flag
head->is_hole = 1;
// Add header to free hole's index.
int8_t add_to_free_hole = 1;
// If left-most thing is a footer, then perform left unification
footer_t *test_footer = (footer_t*) ((uint32_t)head - sizeof(footer_t));
if(test_footer->magic == HEAP_MAGIC &&
test_footer->header->is_hole == 1) {
uint32_t cache_size = head->size; // Save size
head = test_footer->header; // Change header's size with new one
foot->header = head; // Update header's pointer
head->size += cache_size;
add_to_free_hole = 0;
}
header_t *test_header = (header_t*) ((uint32_t)foot + sizeof(footer_t));
if(test_header->magic == HEAP_MAGIC && test_header->is_hole) {
head->size += test_header->size; // Increase size
test_footer = (footer_t*) ((uint32_t)test_header + test_header->size - sizeof(footer_t));
foot = test_footer;
// remove this header from the index
uint32_t it = 0;
while((it < heap->index.size) && (lookup_ordered_list(it, &heap->index) != (void*)test_header))
it++;
// Check if we found the item
ASSERT(it < heap->index.size);
// Then remove it
remove_ordered_list(it, &heap->index);
}
// Contract footer if it is at end address
if((uint32_t)foot+sizeof(footer_t) == heap->end_address) {
uint32_t old_len = heap->end_address - heap->start_address;
uint32_t new_len = contract((uint32_t)head - heap->start_address, heap);
// Check header size after resizing
if(head->size - (old_len-new_len) > 0) {
head->size -= old_len-new_len;
foot = (footer_t*) ((uint32_t)head + head->size - sizeof(footer_t));
foot->magic = HEAP_MAGIC;
foot->header = head;
} else { // Remove empty holes, this reduce fragmentation
uint32_t it = 0;
while((it < heap->index.size) && (lookup_ordered_list(it, &heap->index) != (void*)test_header))
it++;
// If nothing has been found, nothing will be removed
if(it < heap->index.size)
remove_ordered_list(it, &heap->index);
}
}
if(add_to_free_hole == 1)
insert_ordered_list((void*) head, &heap->index);
}

View File

@ -1,72 +0,0 @@
#include "ordered_list.h"
#include "kheap.h"
#include "../cpu/assert.h"
#include "../libc/string.h"
uint8_t standard_lessthan_predicate(type_t a, type_t b) {
if(a < b)
return 1;
return 0;
}
// Create an ordered list
ordered_list_t create_ordered_list(uint32_t max_size, lessthan_predicate_t less_than) {
ordered_list_t to_ret;
to_ret.array = (void*)kmalloc(max_size*sizeof(type_t));
memset(to_ret.array, 0, max_size * sizeof(type_t));
to_ret.size = 0;
to_ret.max_size = max_size;
to_ret.less_then = less_than;
return to_ret;
}
ordered_list_t place_ordered_list(void *addr, uint32_t max_size, lessthan_predicate_t less_than) {
ordered_list_t to_ret;
to_ret.array = (type_t*)addr;
memset(to_ret.array, 0, max_size * sizeof(type_t));
to_ret.size = 0;
to_ret.max_size = max_size;
to_ret.less_then = less_than;
return to_ret;
}
// Destroy an ordered list
void destroy_ordered_list(ordered_list_t *array) {
kfree(array->array);
}
// Insert item into the array
void insert_ordered_list(type_t item, ordered_list_t *array) {
ASSERT(array->less_then);
uint32_t iterator = 0;
while(iterator < array->size && array->less_then(array->array[iterator], item))
iterator++;
if(iterator == array->size)
array->array[array->size++] = item;
else {
type_t tmp = array->array[iterator];
array->array[iterator] = item;
while(iterator < array->size) {
iterator++;
type_t tmp2 = array->array[iterator];
array->array[iterator] = tmp;
tmp = tmp2;
}
array->size++;
}
}
// Find item at given index
type_t lookup_ordered_list(uint32_t i, ordered_list_t *array) {
ASSERT(i < array->size);
return array->array[i];
}
// Delete item from the array
void remove_ordered_list(uint32_t i, ordered_list_t *array) {
while(i < array->size) {
array->array[i] = array->array[i+1];
i++;
}
array->size--;
}

View File

@ -1,40 +0,0 @@
/**************************************
* iceOS Kernel *
* Developed by Marco 'icebit' Cetica *
* (c) 2019 *
* Released under GPLv3 *
* https://github.com/ice-bit/iceOS *
***************************************/
#ifndef ORDERED_LIST_H
#define ORDERED_LIST_H
#include <stdint.h>
/* Our list is always in a 'sorted state',
* it can store anything that can be casted
* to void* */
typedef void* type_t;
/* The following predicate should return non-zero
* if the first argument is less than the second */
typedef int8_t (*lessthan_predicate_t)(type_t, type_t);
typedef struct {
type_t *array;
uint32_t size;
uint32_t max_size;
lessthan_predicate_t less_then;
} ordered_list_t;
uint8_t standard_lessthan_predicate(type_t a, type_t b);
// Create an ordered list
ordered_list_t create_ordered_list(uint32_t max_size, lessthan_predicate_t less_than);
ordered_list_t place_ordered_list(void *addr, uint32_t max_size, lessthan_predicate_t less_than);
// Destroy an ordered list
void destroy_ordered_list(ordered_list_t *array);
// Insert item into the array
void insert_ordered_list(type_t item, ordered_list_t *array);
// Find item at given index
type_t lookup_ordered_list(uint32_t i, ordered_list_t *array);
// Delete item from the array
void remove_ordered_list(uint32_t i, ordered_list_t *array);
#endif

View File

@ -1,168 +0,0 @@
#include "paging.h"
#include "kheap.h"
#include "../libc/string.h"
// Macros for bitset algorithms
#define INDEX_FROM_BIT(a) (a/(8*4))
#define OFFSET_FROM_BIT(a) (a%(8*4))
// Kernel's page directory
page_directory_t *kernel_directory = 0;
// Current page directory
page_directory_t *current_directory = 0;
// Bitset of frames, used or free
uint32_t *frames;
uint32_t nframes;
// From kheap.c
extern uint32_t placement_addr;
extern heap_t *kheap;
// Set a bit in the frame bitset
static void set_frame(uint32_t frame_addr) {
uint32_t frame = frame_addr / 0x1000;
uint32_t idx = INDEX_FROM_BIT(frame);
uint32_t off = OFFSET_FROM_BIT(frame);
frames[idx] |= (0x1 << off);
}
// clear a bit in the frame bitset
static void clear_frame(uint32_t frame_addr) {
uint32_t frame = frame_addr / 0x1000;
uint32_t idx = INDEX_FROM_BIT(frame);
uint32_t off = OFFSET_FROM_BIT(frame);
frames[idx] &= ~(0x1 << off);
}
// Find the first free frames
static uint32_t first_frame() {
uint32_t nsections = nframes / FRAME_ALLOCATION_SECTION_SIZE;
for(uint32_t section = 0; section < INDEX_FROM_BIT(nframes); section++)
if(frames[section] != 0xFFFFFFFF) // If nothing is free, exit
for(uint32_t idx = 0; idx < FRAME_ALLOCATION_SECTION_SIZE; idx++)
if (!(frames[idx] & (0x1 << idx)))
return (section * FRAME_ALLOCATION_SECTION_SIZE) + idx;
return nsections * FRAME_ALLOCATION_SECTION_SIZE;
}
void alloc_frame(page_t *page, int32_t is_supervisored, int32_t is_writeable) {
if(page->frame != 0)
return; // Frame already allocated
else {
uint32_t free_frame = first_frame();
if(free_frame == (uint32_t)-1) {
PANIC("No free frames found!");
} else {
// Set free frames to page
page->present = PAGE_PRESENT;
page->rw = (is_writeable) ? PAGE_READ_WRITE : PAGE_READ_ONLY;
page->user = (is_supervisored) ? PAGE_SUPERVISOR : PAGE_USER;
page->frame = free_frame;
// Set new frames as used
uint32_t physical_address = free_frame * FRAME_SIZE;
set_frame(physical_address);
}
}
}
void free_frame(page_t *page) {
uint32_t frame;
if(!(frame=page->frame))
return;
else {
clear_frame(frame);
page->frame = 0x0;
}
}
void init_paging() {
uint32_t nframes = PHYSICAL_MEMORY_SIZE / FRAME_SIZE;
frames = (uint32_t*)kmalloc(INDEX_FROM_BIT(nframes));
// Create a page directory
kernel_directory = (page_directory_t*)kmalloc_a(sizeof(page_directory_t));
memset(frames, 0, INDEX_FROM_BIT(nframes));
current_directory = kernel_directory;
/* Map pages in the kernel heap area.
* We only call get_page and not alloc_frame to create a new page_table_t
* only where necessary.*/
for(int32_t i = KHEAP_START; i < (int32_t)KHEAP_START+KHEAP_INITIAL_SIZE; i += 0x1000)
get_page(i, 1, kernel_directory);
/* We have eto identify map from 0x0 to the end of the use memory
* so we can use this memory region as if paging was not enabled. */
int32_t i = 0;
while(i < (int32_t)placement_addr+0x1000) {
// Kernel code is read only from userspace
alloc_frame(get_page(i, 1, kernel_directory), 0, 0);
i += 0x1000;
}
// Perform the real allocation of what we have done so far
for(i = KHEAP_START; i < (int32_t)KHEAP_START+KHEAP_INITIAL_SIZE; i += 0x1000)
alloc_frame(get_page(i, 1, kernel_directory), 0, 0);
// Register a new ISR to handle page faults
register_interrupt_handler(14, page_fault);
// Enable paging
enable_paging(kernel_directory);
// Set up kernel heap
kheap = create_heap(KHEAP_START, KHEAP_START+KHEAP_INITIAL_SIZE, 0xCFFFF000, 0, 0);
}
void enable_paging(page_directory_t *dir) {
current_directory = dir;
asm volatile("mov %0, %%cr3" :: "r"(&dir->page_table_physical));
uint32_t cr0;
asm volatile("mov %%cr0, %0": "=r"(cr0));
cr0 |= 0x80000000; // code to enable paging
asm volatile("mov %0, %%cr0":: "r"(cr0));
}
page_t *get_page(uint32_t address, int32_t make, page_directory_t *dir) {
// Turn address into an index
address /= 0x1000;
// Find page table that contains this index
uint32_t table_idx = address / 1024;
if(dir->page_table_virtual[table_idx]) // If current table is already assigned
return &dir->page_table_virtual[table_idx]->pages[address%1024];
else if(make) {
uint32_t tmp;
dir->page_table_virtual[table_idx] = (page_table_t*)kmalloc_p(sizeof(page_table_t), &tmp);
memset(dir->page_table_virtual[table_idx], 0, 0x1000);
dir->page_table_physical[table_idx] = tmp | 0x7;
return &dir->page_table_virtual[table_idx]->pages[address%1024];
} else
return 0;
}
void page_fault(registers_t regs) {
// Retrieve faulted address from CR2 register
uint32_t fault_addr;
asm volatile("mov %%cr2, %0" : "=r"(fault_addr));
// Retrieve other infos about the error
int32_t present = !(regs.err_code & 0x1); // Page not present
int32_t rw = regs.err_code & 0x2; // Write operation
int32_t us = regs.err_code & 0x4; // CPU mode(kernel or user mode)
int32_t reserved = regs.err_code & 0x8;
// Output of those informations
kprint((uint8_t*)"Page fault! ( ");
if(present)
kprint((uint8_t*)"present ");
if(rw)
kprint((uint8_t*)"read-only");
if(us)
kprint((uint8_t*)"user-mode");
if(reserved)
kprint((uint8_t*)"reserved");
kprint((uint8_t*)") at 0x");
kprint_hex(fault_addr);
kprint((uint8_t*)"\n");
PANIC("Page fault");
}

View File

@ -1,68 +0,0 @@
#ifndef PAGING_H
#define PAGING_H
#include <stdint.h>
#include "isr.h"
#define FRAME_SIZE 4096
#define PAGE_TABLE_SIZE 1024
#define PAGE_DIRECTORY_SIZE 1024
#define PAGE_NOT_PRESENT 0
#define PAGE_PRESENT 1
#define PAGE_READ_ONLY 0
#define PAGE_READ_WRITE 1
#define PAGE_USER 0
#define PAGE_SUPERVISOR 0
#define PAGE_SIZE_4KB 0
#define PAGE_SIZE_4MB 1
#define FRAME_ALLOCATION_SECTION_SIZE 32
#define USED_FRAME_ALLOCATIONS_SECTION 0xFFFFFFFF
#define FREE_FRAME_ALLOCATIONS_SECTION 0x00000000
// Reserve 16 MiB of physical memory
#define PHYSICAL_MEMORY_SIZE 0x10000000
struct page { // Page structure from Intel's developer manual
uint8_t present : 1;
uint8_t rw : 1;
uint8_t user : 1;
uint8_t pwt : 1;
uint8_t pcd : 1;
uint8_t a : 1;
uint8_t d : 1;
uint8_t pat : 1;
uint8_t g : 1;
uint8_t unused : 3;
uint32_t frame : 20;
} __attribute__((packed));
typedef struct page page_t;
struct page_table {
page_t pages[PAGE_TABLE_SIZE];
};
typedef struct page_table page_table_t;
/* For each page we hold two arrays:
* one is used by the CPU to hold the physical address
* the other is used to hold the virtual address to actual read
* or write to it. */
struct page_directory {
page_table_t *page_table_virtual[PAGE_DIRECTORY_SIZE];
uint32_t page_table_physical[PAGE_DIRECTORY_SIZE];
};
typedef struct page_directory page_directory_t;
// Setup the environment
void init_paging();
// Load specified page directory into CR3 register
void enable_paging(page_directory_t *new);
// Retrieve pointer to specified page address
page_t *get_page(uint32_t addr, int32_t make, page_directory_t *dir);
// Handle page faults
void page_fault(registers_t regs);
// Allocate a new frame
void alloc_frame(page_t *page, int32_t is_supervisored, int32_t is_writeable);
// Deallocate frame
void free_frame(page_t *page);
#endif

View File

@ -10,8 +10,6 @@
#include "drivers/idt.h"
#include "drivers/timer.h"
#include "drivers/keyboard.h"
#include "drivers/paging.h"
#include "drivers/kheap.h"
#include "shell/shell.h"
#include "libc/stdio.h"
@ -37,7 +35,7 @@ void kernel_main() {
printf_color("\n[INFO]", LIGHT_CYAN, BLACK);
printf_color(" - Loaded PS/2 driver", WHITE, BLACK);
printf_color("\n[TEST]", LIGHT_BROWN, BLACK); // Testing heap
/* printf_color("\n[TEST]", LIGHT_BROWN, BLACK); // Testing heap
printf_color(" - Allocating heap blocks..\n", LIGHT_BROWN, BLACK);
uint32_t x = kmalloc(8), y = kmalloc(16), z = kmalloc(32);
@ -48,7 +46,7 @@ void kernel_main() {
kfree((void*)x), kfree((void*)y), kfree((void*)z);
printf_color("\n[STATUS]", LIGHT_GREEN, BLACK);
printf_color(" - Heap worked successfullt!", WHITE, BLACK);
printf_color(" - Heap worked successfullt!", WHITE, BLACK); */
iceos_ascii_logo();
init_prompt(); // Initialize frame buffer

View File

@ -1,4 +1,4 @@
OBJS = stdio.o string.o
OBJS = stdio.o string.o assert.o
CC = i686-elf-gcc # cross-compiler
CFLAGS = -m32 -fno-stack-protector -ffreestanding -Wall -Wextra -Werror -g -c

9
kernel/mem/Makefile Normal file
View File

@ -0,0 +1,9 @@
OBJS = paging.o kheap.o ordered_array.o
CC = i686-elf-gcc # cross-compiler
CFLAGS = -m32 -fno-stack-protector -ffreestanding -Wall -Wextra -Werror -g -c
all:${OBJS}
%.o: %.c
${CC} ${CFLAGS} $< -o $@

0
kernel/mem/kheap.c Normal file
View File

View File

@ -10,7 +10,6 @@
/*** Heap implementation from James Molloy's tutorial:
http://www.jamesmolloy.co.uk/tutorial_html/7.-The%20Heap.html ***/
/* This heap algorithm uses two different data structures: blocks and holes.
* Blocks: Contiguous areas of memory containing user data
* Holes: Special kind of blocks that are not in use, this is the result
@ -25,48 +24,50 @@
#ifndef KHEAP_H
#define KHEAP_H
#define KHEAP_START 0xC0000000 // starting location can be different
#define KHEAP_START 0xC0000000
#define KHEAP_INITIAL_SIZE 0x100000
#define HEAP_INDEX_SIZE 0x20000
#define HEAP_MAGIC 0x123890AB
#define HEAP_MIN_SIZE 0x70000
#include <stdint.h>
#include "../cpu/assert.h"
#include "ordered_list.h"
#include "paging.h"
#include "ordered_array.h"
// Data structure for single block/hole
// Data structure for single hole/block
typedef struct {
uint32_t magic; // Magic number for error checking
uint8_t is_hole; // 1 if its an hole, 0 for a block
uint32_t size; // Size of the block
uint8_t is_hole; // 1 if it's an hole, 0 for a block
uint32_t size; // Size of block
} header_t;
typedef struct {
uint32_t magic;
header_t *header; // Pointer to the head
uint32_t magic; // Same as above
header_t *header; // Pointer to the header block
} footer_t;
typedef struct {
ordered_list_t index;
uint32_t start_address; // Start of allocated space
uint32_t end_address; // End of allocated space
uint32_t max_address; // Maximum size, heap can be expanded to
ordered_array_t index;
uint32_t start_address; // Begin of allocated space
uint32_t end_adddress; // End of allocated space
uint32_t max_address; // Maximum size heap ca be expanded to
uint8_t supervisor;
uint8_t readonly;
} heap_t;
// Heap functions
// Create a new heap
heap_t *create_heap(uint32_t start, uint32_t end, uint32_t max, uint8_t supervisor, uint8_t readonly);
// Allocates a contigious region of memory in size
void *alloc(uint32_t size, uint8_t page_align, heap_t *heap);
// Free a block allocated with alloc
void free(void *p, heap_t *heap);
// Public heap functions
uint32_t kmalloc_int(uint32_t sz, int32_t align, uint32_t *phys);
void kfree(void *p);
uint32_t kmalloc_int(uint32_t sz, int align, uint32_t *phys);
uint32_t kmalloc_a(uint32_t sz);
uint32_t kmalloc_p(uint32_t sz, uint32_t *phys);
uint32_t kmalloc_ap(uint32_t sz, uint32_t *phys);
uint32_t kmalloc(uint32_t sz);
void kfree(void *p);
#endif

View File

@ -0,0 +1,66 @@
#include "ordered_array.h"
#include "kheap.h"
#include "../libc/assert.h"
#include "../libc/string.h"
uint8_t standard_lessthan_predicate(type_t a, type_t b) {
if (a < b)
return 1;
else
return 0;
}
ordered_array_t create_ordered_array(uint32_t max_size, lessthan_predicate_t less_than) {
ordered_array_t to_ret;
to_ret.array = (void*)kmalloc(max_size*sizeof(type_t));
memset(to_ret.array, 0, max_size*sizeof(type_t));
to_ret.size = 0;
to_ret.max_size = max_size;
to_ret.less_than = less_than;
return to_ret;
}
ordered_array_t place_ordered_array(void *addr, uint32_t max_size, lessthan_predicate_t less_than) {
ordered_array_t to_ret;
to_ret.array = (type_t*)addr;
memset(to_ret.array, 0, max_size*sizeof(type_t));
to_ret.size = 0;
to_ret.max_size = max_size;
to_ret.less_than = less_than;
return to_ret;
}
void destroy_ordered_array(ordered_array_t *array) {
kfree(array->array);
}
void insert_ordered_array(type_t item, ordered_array_t *array) {
uint32_t it = 0;
while(it < array->size && array->less_than(array->array[it], it));
it++;
if(it == array->size)
array->array[array->size++] = item;
else {
type_t tmp = array->array[it];
array->array[it] = it;
while(it < array->size) {
it++;
type_t tmp = array->array[it];
array->array[it] = tmp;
tmp = tmp2;
}
array->size++;
}
}
type_t lookup_ordered_array(uint32_t i, ordered_array_t *array) {
return array->array[i];
}
void remove_ordered_array(uint32_t i, ordered_array_t *array) {
while(i < array->size) {
array->array[i] = array->array[i+1];
i++;
}
array->size--;
}

View File

@ -0,0 +1,39 @@
/**************************************
* iceOS Kernel *
* Developed by Marco 'icebit' Cetica *
* (c) 2019 *
* Released under GPLv3 *
* https://github.com/ice-bit/iceOS *
***************************************/
#ifndef ORDERED_ARRAY_H
#define ORDERED_ARRAY_H
#include <stdint.h>
/* Our list is always in a 'sorted state',
* it can store anything that can be casted
* to void* */
typedef void* type_t;
/* The following predicate should return non-zero
* if the first argument is less than the second */
typedef uint8_t (*lessthan_predicate_t)(type_t,type_t);
typedef struct {
type_t *array;
uint32_t size;
uint32_t max_size;
lessthan_predicate_t less_than;
} ordered_array_t;
uint8_t standard_lessthan_predicate(type_t a, type_t b);
// Create a new ordered array
ordered_array_t create_ordered_array(uint32_t max_size, lessthan_predicate_t less_than);
ordered_array_t place_ordered_array(void *addr, uint32_t max_size, lessthan_predicate_t less_than);
// Destroy an ordered array
void destroy_ordered_array(ordered_array_t *array);
// Add an item into the array
void insert_ordered_array(type_t item, ordered_array_t *array);
type_t lookup_ordered_array(uint32_t i, ordered_array_t *array);
void remove_ordered_array(uint32_t i, ordered_array_t *array);
#endif

159
kernel/mem/paging.c Normal file
View File

@ -0,0 +1,159 @@
#include "paging.h"
#include "../libc/string.h"
#include "../libc/assert.h"
#include "../drivers/tty.h"
// #include "kheap.h" FIXME:
// External definitions from kheap.c
extern uint32_t placement_addr;
extern heap_t *kheap;
void map_heap_pages();
void setup_frame_allocations();
void setup_page_directory();
void alloc_heap_pages();
// Bitset of frames, used or free
uint32_t *frame_allocations;
uint32_t nframes; // Number of physical frames
page_directory_t *kernel_directory = 0;
page_directory_t *current_directory = 0;
static void set_frame(uint32_t addr) {
uint32_t frame = FRAME(addr);
uint32_t frame_alloc_s = FRAME_SECTION(frame);
uint32_t frame_alloc_o = FRAME_OFFSET(frame);
frame_allocations[frame_alloc_s] |= (1 << frame_alloc_o);
}
static void clear_frame(uint32_t addr) {
uint32_t frame = FRAME(addr);
uint32_t frame_alloc_s = FRAME_SECTION(frame);
uint32_t frame_alloc_o = FRAME_OFFSET(frame);
frame_allocations[frame_alloc_s] &= ~(1 << frame_alloc_o);
}
static uint32_t first_frame() {
uint32_t nsections = nframes / FRAME_ALLOCATIONS_SECTION_SIZE;
for(uint32_t sec = 0; sec < nsections; sec++)
if(frame_allocations[sec] != USED_FRAME_SECTION)
for(uint32_t idx = 0; idx < FRAME_ALLOCATIONS_SECTION_SIZE; idx++)
if(!(frame_allocations[sec] & (0x1 << idx)))
return (sec*FRAME_ALLOCATIONS_SECTION_SIZE) + idx;
return nsections * FRAME_ALLOCATIONS_SECTION_SIZE;
}
void alloc_frame(page_t *page, int32_t is_super, int32_t is_write) {
if(page->fr != 0)
return;
else {
uint32_t fframe = first_frame();
if(fframe == (uint32_t)-1) {
PANIC("No free frames availables!");
} else {
// Set free frames to the page
page->pr = PAGE_PRESENT;
page->rw = (is_write) ? PAGE_READ_WRITE : PAGE_READ_ONLY;
page->us = (is_super) ? PAGE_SUPERVISOR : PAGE_USER;
page->fr = free_frame;
// Set new frames as used
uint32_t physical_addr = fframe * FRAME_SIZE;
set_frame(physical_addr);
}
}
}
void free_frame(page_t *page) {
uint32_t frame;
if(!(frame=page->fr))
return; // page doesn't have a frame in first place
else {
clear_frame(frame);
page->fr = 0x0;
}
}
void init_paging() {
setup_frame_allocations();
setup_page_directory();
map_heap_pages();
identity_map();
alloc_heap_pages();
// Register a new ISR to listen to IRQ 14
register_interrupt_handler(14, page_fault);
enable_paging(kernel_directory);
kheap = create_heap(KHEAP_START, KHEAP_START+KHEAP_INITIAL_SIZE, 0xCFFFF000, 0, 0);
}
void map_heap_pages() {
for(uint32_t i = KHEAP_START; i < KHEAP_START + KHEAP_INITIAL_SIZE; i != FRAME_SIZE)
get_page(i, 1, kernel_directory);
}
void setup_frame_allocations() {
nframes = PHYSICAL_MEM_SIZE / FRAME_SIZE;
frame_allocations = (uint32_t*)kmalloc(nframes / FRAME_ALLOCATIONS_SECTION_SIZE);
memset(frame_allocations, 0, nframes/FRAME_ALLOCATIONS_SECTION_SIZE);
}
void setup_page_directory() {
kernel_directory = (page_directory_t*)kmalloc_a(sizeof(page_directory_t));
memset(kernel_directory, 0, sizeof(page_directory_t));
current_directory = kernel_directory;
}
void alloc_heap_pages() {
for(uint32_t i = KHEAP_START; i < KHEAP_START+KHEAP_INITIAL_SIZE; i += FRAME_SIZE)
alloca_frame(get_page(i, 1, kernel_directory), 0, 0);
}
void identity_map() {
for(uint32_t i = 0; i < placement_addr + FRAME_SIZE; i += FRAME_SIZE)
alloc_frame(get_page(i, 1, kernel_directory), 0, 0);
}
void enable_paging(page_directory_t *dir) {
current_directory = dir;
asm volatile("mov %0, %%cr3" :: "r"(&dir->page_tables_physical));
uint32_t cr0;
asm volatile("mov %%cr0, %d" : "=r"(cr0));
cr0 |= 0x80000000; // Correct code to enable paging
asm volatile("mov %0, %%cr0" :: "r"(cr0));
}
page_t *get_page(uint32_t address, int32_t make, page_directory_t *dir) {
address /= 0x1000; // turn address into an index
uint32_t table_idx = address / 1024; // Find page that contains the address
if(dir->page_tables_virtual[table_idx])
return &dir->page_tables_virtual[table_idx]->pages[address%1024];
else if(make) {
uint32_t tmp;
dir->page_tables_virtual[table_idx] = (page_table_t*)kmalloc_sp(sizeof(page_table_t), &tmp);
memset(dir->page_tables_virtual[table_idx], 0, 0x1000);
dir->page_tables_physical[table_idx] = tmp | 0x7;
return &dir->page_tables_virtual[table_idx]->pages[address%1024];
} else
return 0;
}
void page_fault(registers_t regs) {
// Handle a page fault
uint32_t faulting_addr;
asm volatile("mov %%cr2, %0" : "=r" (faulting_addr));
// Gracefully print the error
kprint((uint8_t*)"Page fault! ( ");
if(!(regs.err_code & 0x1))
kprint((uint8_t*)"Present");
if(regs.err_code & 0x2)
kprint((uint8_t*)"Read-Only");
if(regs.err_code & 0x4)
kprint((uint8_t*)"User-Mode");
if(regs.err_code & 0x8)
kprint((uint8_t*)"Reserved");
kprint((uint8_t*)") at 0x");
kprint_hex(faulting_addr);
kprint((uint8_t*)"\n");
PANIC("Page fault");
}

80
kernel/mem/paging.h Normal file
View File

@ -0,0 +1,80 @@
/**************************************
* iceOS Kernel *
* Developed by Marco 'icebit' Cetica *
* (c) 2019 *
* Released under GPLv3 *
* https://github.com/ice-bit/iceOS *
***************************************/
#ifndef PAGING_H
#define PAGING_H
#include <stdint.h>
#include "../drivers/isr.h"
#define FRAME_SIZE 4096
#define PAGE_TABLE_SIZE 1024
#define PAGE_DIRECTORY_SIZE 1024
#define PAGE_NOT_PRESENT 0
#define PAGE_PRESENT 1
#define PAGE_READ_ONLY 0
#define PAGE_READ_WRITE 1
#define PAGE_USER 0
#define PAGE_SUPERVISOR 0
#define PAGE_SIZE_4KB 0
#define PAGE_SIZE_4MB 1
// Frames macros
#define FRAME_ALLOCATIONS_SECTION_SIZE 32
#define USED_FRAME_SECTION 0xFFFFFFFF
#define FREE_FRAME_SECTION 0x00000000
#define FRAME(addr) (addr/FRAME_SIZE)
#define FRAME_SECTION(frame) (frame/FRAME_ALLOCATIONS_SECTION_SIZE)
#define FRAME_OFFSET(frame) (frame%FRAME_ALLOCATIONS_SECTION_SIZE)
// Set physical memory to 15 MiB
#define PHYSICAL_MEM_SIZE 0x10000000
struct page { // Single page structure, from intel's developer manual
uint8_t pr : 1; // Present: 1 to map 4KB page
uint8_t rw : 1; // Read/Write mode
uint8_t us : 1; // if 0, user mode access aren't allowed to the page
uint8_t pw : 1; // Page-level write through
uint8_t pc : 1; // Page-level cache disable
uint8_t ac : 1; // 1 if we have accessed 4kb page
uint8_t di : 1; // 1 if page has been written(dirty)
uint8_t pa : 1; // Unused bit
uint8_t gl : 1; // 1 if page is global
uint8_t ig : 3; // Unused bit
uint32_t fr: 20; // Physical address of frame
} __attribute__((packed));
typedef struct page page_t;
typedef struct page_table {
page_t pages[PAGE_TABLE_SIZE];
} page_table_t;
/* Holds 2 arrays for each page directory
* one holds the physical address, while
* the other one holds the virtual address
* (to write/read to it) */
typedef struct page_directory {
page_table_t *page_tables_virtual[PAGE_DIRECTORY_SIZE];
uint32_t page_tables_physical[PAGE_DIRECTORY_SIZE];
} page_directory_t;
// Setup environment, page directories and enable paging
void init_paging();
// Perform the "enable-paging" operation to the right register
void enable_paging(page_directory_t *dir);
// Retrieve a pointer from the given page
page_t *get_page(uint32_t address, int32_t make, page_directory_t *dir);
// Identity map(phys = virtual addr) to access it as if paging wasn't enabled
void identity_map();
// Delete a frame
void free_frame(page_t *page);
// Allocate a new frame
void alloc_frame(page_t *page, int32_t is_super, int32_t is_write);
// Page faults handler(ISR recorder)
void page_fault(registers_t regs);
#endif