Fixed bugs about kheap, paging and ordered list

Furthermore, added Heap kernel driver code
for both allocation and deallocation
free() does not works yet:
`ASSERTION-FAILED(head->magic == HEAP_MAGIC) at kheap.c:261`
This commit is contained in:
ice-bit 2019-09-24 18:32:38 +02:00
parent a378ca4061
commit 3c574238cf
6 changed files with 117 additions and 80 deletions

View File

@ -251,7 +251,7 @@ void *alloc(uint32_t size, uint8_t page_align, heap_t *heap) {
void free(void *p, heap_t *heap) { void free(void *p, heap_t *heap) {
// Exit for null pointer // Exit for null pointer
if(p == NULL) if(p == 0)
return; return;
// Retrieve the header and the footer for this pointer // Retrieve the header and the footer for this pointer

View File

@ -1,4 +1,7 @@
#include "ordered_list.h" #include "ordered_list.h"
#include "kheap.h"
#include "../cpu/assert.h"
#include "../libc/string.h"
uint8_t standard_lessthan_predicate(type_t a, type_t b) { uint8_t standard_lessthan_predicate(type_t a, type_t b) {
if(a < b) if(a < b)

View File

@ -9,9 +9,6 @@
#define ORDERED_LIST_H #define ORDERED_LIST_H
#include <stdint.h> #include <stdint.h>
#include "kheap.h"
#include "../cpu/assert.h"
#include "../libc/string.h"
/* Our list is always in a 'sorted state', /* Our list is always in a 'sorted state',
* it can store anything that can be casted * it can store anything that can be casted

View File

@ -1,4 +1,6 @@
#include "paging.h" #include "paging.h"
#include "kheap.h"
#include "../libc/string.h"
// Macros for bitset algorithms // Macros for bitset algorithms
#define INDEX_FROM_BIT(a) (a/(8*4)) #define INDEX_FROM_BIT(a) (a/(8*4))
@ -14,10 +16,9 @@ uint32_t *frames;
uint32_t nframes; uint32_t nframes;
// From kheap.c // From kheap.c
extern uint32_t placement_address; extern uint32_t placement_addr;
extern heap_t *kheap; extern heap_t *kheap;
// Set a bit in the frame bitset // Set a bit in the frame bitset
static void set_frame(uint32_t frame_addr) { static void set_frame(uint32_t frame_addr) {
uint32_t frame = frame_addr / 0x1000; uint32_t frame = frame_addr / 0x1000;
@ -34,40 +35,35 @@ static void clear_frame(uint32_t frame_addr) {
frames[idx] &= ~(0x1 << off); frames[idx] &= ~(0x1 << off);
} }
// Test if a bit is set // Find the first free frames
static uint32_t test_frame(uint32_t frame_addr) {
uint32_t frame = frame_addr / 0x1000;
uint32_t idx = INDEX_FROM_BIT(frame);
uint32_t off = OFFSET_FROM_BIT(frame);
return (frames[idx] & (0x1 << off));
}
// Find the first three frames
static uint32_t first_frame() { static uint32_t first_frame() {
for(uint32_t i = 0; i < INDEX_FROM_BIT(nframes); i++) { uint32_t nsections = nframes / FRAME_ALLOCATION_SECTION_SIZE;
if(frames[i] != 0xFFFFFFFF) { // If nothing is free, exit for(uint32_t section = 0; section < INDEX_FROM_BIT(nframes); section++)
for(uint32_t j = 0; j < 32; j++) { if(frames[section] != 0xFFFFFFFF) // If nothing is free, exit
uint32_t to_test = 0x1 << j; for(uint32_t idx = 0; idx < FRAME_ALLOCATION_SECTION_SIZE; idx++)
if (!(frames[i]&to_test)) if (!(frames[idx] & (0x1 << idx)))
return i*4*8+j; return (section * FRAME_ALLOCATION_SECTION_SIZE) + idx;
} return nsections * FRAME_ALLOCATION_SECTION_SIZE;
}
}
} }
void alloc_frame(page_t *page, int32_t is_kernel, int32_t is_writeable) { void alloc_frame(page_t *page, int32_t is_supervisored, int32_t is_writeable) {
if(page->frame != 0) if(page->frame != 0)
return; return; // Frame already allocated
else { else {
uint32_t idx = first_frame(); uint32_t free_frame = first_frame();
if(idx == (uint32_t)-1) { if(free_frame == (uint32_t)-1) {
// panic PANIC("No free frames found!");
} else {
// Set free frames to page
page->present = PAGE_PRESENT;
page->rw = (is_writeable) ? PAGE_READ_WRITE : PAGE_READ_ONLY;
page->user = (is_supervisored) ? PAGE_SUPERVISOR : PAGE_USER;
page->frame = free_frame;
// Set new frames as used
uint32_t physical_address = free_frame * FRAME_SIZE;
set_frame(physical_address);
} }
set_frame(idx*0x1000);
page->present = 1;
page->rw = (is_writeable) ? 1 : 0;
page->user = (is_kernel) ? 1 : 0;
page->frame = idx;
} }
} }
@ -82,46 +78,45 @@ void free_frame(page_t *page) {
} }
void init_paging() { void init_paging() {
uint32_t mem_end_page = 0x1000000; // Physical address memory(16MiB big) uint32_t nframes = PHYSICAL_MEMORY_SIZE / FRAME_SIZE;
nframes = mem_end_page / 0x1000;
frames = (uint32_t*)kmalloc(INDEX_FROM_BIT(nframes)); frames = (uint32_t*)kmalloc(INDEX_FROM_BIT(nframes));
memset(frames, 0, INDEX_FROM_BIT(nframes));
// Create a page directory // Create a page directory
kernel_directory = (page_directory_t*)kmalloc_a(sizeof(page_directory_t)); kernel_directory = (page_directory_t*)kmalloc_a(sizeof(page_directory_t));
memset(frames, 0, INDEX_FROM_BIT(nframes));
current_directory = kernel_directory; current_directory = kernel_directory;
/* Map pages in the kernel heap area. /* Map pages in the kernel heap area.
* We only call get_page and not alloc_frame to create a new page_table_t * We only call get_page and not alloc_frame to create a new page_table_t
* only where necessary.*/ * only where necessary.*/
for(int32_t i = KHEAP_START; i < KHEAP_START+KHEAP_INITIAL_SIZE; i += 0x1000) for(int32_t i = KHEAP_START; i < (int32_t)KHEAP_START+KHEAP_INITIAL_SIZE; i += 0x1000)
get_page(i, 1, kernel_directory); get_page(i, 1, kernel_directory);
/* We have eto identify map from 0x0 to the end of the use memory /* We have eto identify map from 0x0 to the end of the use memory
* so we can use this memory region as if paging was not enabled. */ * so we can use this memory region as if paging was not enabled. */
int32_t i = 0; int32_t i = 0;
while(i < placement_address+0x1000) { while(i < (int32_t)placement_addr+0x1000) {
// Kernel code is read only from userspace // Kernel code is read only from userspace
alloc_frame(get_page(i, 1, kernel_directory), 0, 0); alloc_frame(get_page(i, 1, kernel_directory), 0, 0);
i += 0x1000; i += 0x1000;
} }
// Perform the real allocation of what we have done so far // Perform the real allocation of what we have done so far
for(i = KHEAP_START; i < KHEAP_START+KHEAP_INITIAL_SIZE; i += 0x1000) for(i = KHEAP_START; i < (int32_t)KHEAP_START+KHEAP_INITIAL_SIZE; i += 0x1000)
alloc_frame(get_page(i, 1, kernel_directory), 0, 0); alloc_frame(get_page(i, 1, kernel_directory), 0, 0);
// Register a new ISR to handle page faults // Register a new ISR to handle page faults
register_interrupt_handler(14, page_fault); register_interrupt_handler(14, page_fault);
// Enable paging // Enable paging
switch_page_directory(kernel_directory); enable_paging(kernel_directory);
// Set up kernel heap // Set up kernel heap
kheap = create_heap(KHEAP_START, KHEAP_START+KHEAP_INITIAL_SIZE, 0xCFFFF000, 0, 0); kheap = create_heap(KHEAP_START, KHEAP_START+KHEAP_INITIAL_SIZE, 0xCFFFF000, 0, 0);
} }
void switch_page_directory(page_directory_t *dir) { void enable_paging(page_directory_t *dir) {
current_directory = dir; current_directory = dir;
asm volatile("mov %0, %%cr3" :: "r"(&dir->tables_physical)); asm volatile("mov %0, %%cr3" :: "r"(&dir->page_table_physical));
uint32_t cr0; uint32_t cr0;
asm volatile("mov %%cr0, %0": "=r"(cr0)); asm volatile("mov %%cr0, %0": "=r"(cr0));
cr0 |= 0x80000000; // code to enable paging cr0 |= 0x80000000; // code to enable paging
@ -133,14 +128,14 @@ page_t *get_page(uint32_t address, int32_t make, page_directory_t *dir) {
address /= 0x1000; address /= 0x1000;
// Find page table that contains this index // Find page table that contains this index
uint32_t table_idx = address / 1024; uint32_t table_idx = address / 1024;
if(dir->tables[table_idx]) // If current table is already assigned if(dir->page_table_virtual[table_idx]) // If current table is already assigned
return &dir->tables[table_idx]->pages[address%1024]; return &dir->page_table_virtual[table_idx]->pages[address%1024];
else if(make) { else if(make) {
uint32_t tmp; uint32_t tmp;
dir->tables[table_idx] = (page_table_t*)kmalloc_p(sizeof(page_table_t), &tmp); dir->page_table_virtual[table_idx] = (page_table_t*)kmalloc_p(sizeof(page_table_t), &tmp);
memset(dir->tables[table_idx], 0, 0x1000); memset(dir->page_table_virtual[table_idx], 0, 0x1000);
dir->tables_physical[table_idx] = tmp | 0x7; dir->page_table_physical[table_idx] = tmp | 0x7;
return &dir->tables[table_idx]->pages[address%1024]; return &dir->page_table_virtual[table_idx]->pages[address%1024];
} else } else
return 0; return 0;
} }
@ -155,20 +150,19 @@ void page_fault(registers_t regs) {
int32_t rw = regs.err_code & 0x2; // Write operation int32_t rw = regs.err_code & 0x2; // Write operation
int32_t us = regs.err_code & 0x4; // CPU mode(kernel or user mode) int32_t us = regs.err_code & 0x4; // CPU mode(kernel or user mode)
int32_t reserved = regs.err_code & 0x8; int32_t reserved = regs.err_code & 0x8;
int32_t id = regs.err_code & 0x10;
// Output of those informations // Output of those informations
kprint("Page fault! ( "); kprint((uint8_t*)"Page fault! ( ");
if(present) if(present)
kprint("present "); kprint((uint8_t*)"present ");
if(rw) if(rw)
kprint("read-only"); kprint((uint8_t*)"read-only");
if(us) if(us)
kprint("user-mode"); kprint((uint8_t*)"user-mode");
if(reserved) if(reserved)
kprint("reserved"); kprint((uint8_t*)"reserved");
kprint(") at 0x"); kprint((uint8_t*)") at 0x");
kprint_hex(fault_addr); kprint_hex(fault_addr);
kprint("\n"); kprint((uint8_t*)"\n");
PANIC("Page fault"); PANIC("Page fault");
} }

View File

@ -1,41 +1,67 @@
#ifndef PAGING_H #ifndef PAGING_H
#define PAGING_G #define PAGING_H
#include <stdint.h> #include <stdint.h>
#include "isr.h" #include "isr.h"
#include "tty.h"
#include "kheap.h"
typedef struct page { #define FRAME_SIZE 4096
uint32_t present : 1; // Presence in memory of single page #define PAGE_TABLE_SIZE 1024
uint32_t rw : 1; // if set read write otherwise read only #define PAGE_DIRECTORY_SIZE 1024
uint32_t user : 1; // Supervisored mode only if cleared #define PAGE_NOT_PRESENT 0
uint32_t accessed : 1; // true if page has been accessed since last refresh #define PAGE_PRESENT 1
uint32_t dirty : 1; // Same as above for write. #define PAGE_READ_ONLY 0
uint32_t unused : 7; // unused bits #define PAGE_READ_WRITE 1
uint32_t frame : 20; // Frame address (shifted to the right) #define PAGE_USER 0
} page_t; #define PAGE_SUPERVISOR 0
#define PAGE_SIZE_4KB 0
#define PAGE_SIZE_4MB 1
#define FRAME_ALLOCATION_SECTION_SIZE 32
#define USED_FRAME_ALLOCATIONS_SECTION 0xFFFFFFFF
#define FREE_FRAME_ALLOCATIONS_SECTION 0x00000000
typedef struct page_table { // Reserve 16 MiB of physical memory
page_t pages[1024]; #define PHYSICAL_MEMORY_SIZE 0x10000000
} page_table_t;
typedef struct page_directory { struct page { // Page structure from Intel's developer manual
page_table_t *tables[1024]; // array of pointers to page tables uint8_t present : 1;
uint32_t tables_physical[1024]; // address of tables physical. uint8_t rw : 1;
uint32_t physical_addr; uint8_t user : 1;
} page_directory_t; uint8_t pwt : 1;
uint8_t pcd : 1;
uint8_t a : 1;
uint8_t d : 1;
uint8_t pat : 1;
uint8_t g : 1;
uint8_t unused : 3;
uint32_t frame : 20;
} __attribute__((packed));
typedef struct page page_t;
struct page_table {
page_t pages[PAGE_TABLE_SIZE];
};
typedef struct page_table page_table_t;
/* For each page we hold two arrays:
* one is used by the CPU to hold the physical address
* the other is used to hold the virtual address to actual read
* or write to it. */
struct page_directory {
page_table_t *page_table_virtual[PAGE_DIRECTORY_SIZE];
uint32_t page_table_physical[PAGE_DIRECTORY_SIZE];
};
typedef struct page_directory page_directory_t;
// Setup the environment // Setup the environment
void init_paging(); void init_paging();
// Load specified page directory into CR3 register // Load specified page directory into CR3 register
void switch_page_directory(page_directory_t *new); void enable_paging(page_directory_t *new);
// Retrieve pointer to specified page address // Retrieve pointer to specified page address
page_t *get_page(uint32_t addr, int32_t make, page_directory_t *dir); page_t *get_page(uint32_t addr, int32_t make, page_directory_t *dir);
// Handle page faults // Handle page faults
void page_fault(registers_t regs); void page_fault(registers_t regs);
// Allocate a new frame // Allocate a new frame
void alloc_frame(page_t *page, int32_t is_kernel, int32_t is_writeable); void alloc_frame(page_t *page, int32_t is_supervisored, int32_t is_writeable);
// Deallocate frame // Deallocate frame
void free_frame(page_t *page); void free_frame(page_t *page);

View File

@ -10,9 +10,13 @@
#include "drivers/idt.h" #include "drivers/idt.h"
#include "drivers/timer.h" #include "drivers/timer.h"
#include "drivers/keyboard.h" #include "drivers/keyboard.h"
#include "drivers/paging.h"
#include "drivers/kheap.h"
#include "shell/shell.h" #include "shell/shell.h"
#include "libc/stdio.h" #include "libc/stdio.h"
#include <stdint.h>
void kernel_main() { void kernel_main() {
printf_color("\n[STATUS]", LIGHT_GREEN, BLACK); printf_color("\n[STATUS]", LIGHT_GREEN, BLACK);
printf_color(" - Loading kernel, wait please...", WHITE, BLACK); printf_color(" - Loading kernel, wait please...", WHITE, BLACK);
@ -33,6 +37,19 @@ void kernel_main() {
printf_color("\n[INFO]", LIGHT_CYAN, BLACK); printf_color("\n[INFO]", LIGHT_CYAN, BLACK);
printf_color(" - Loaded PS/2 driver", WHITE, BLACK); printf_color(" - Loaded PS/2 driver", WHITE, BLACK);
printf_color("\n[TEST]", LIGHT_BROWN, BLACK); // Testing heap
printf_color(" - Allocating heap blocks..\n", LIGHT_BROWN, BLACK);
uint32_t x = kmalloc(8), y = kmalloc(16), z = kmalloc(32);
printf("x: %x, y: %x, z: %x", x, y, z);
printf_color("\n[TEST]", LIGHT_BROWN, BLACK); // Testing heap
printf_color(" - Freeing heap blocks..\n", LIGHT_BROWN, BLACK);
kfree((void*)x), kfree((void*)y), kfree((void*)z);
printf_color("\n[STATUS]", LIGHT_GREEN, BLACK);
printf_color(" - Heap worked successfullt!", WHITE, BLACK);
iceos_ascii_logo(); iceos_ascii_logo();
init_prompt(); // Initialize frame buffer init_prompt(); // Initialize frame buffer
} }