#include "kheap.h" #include "paging.h" #include "../libc/panic.h" extern uint32_t end; uint32_t placement_addr = (uint32_t)&end; extern page_directory_t *kernel_directory; heap_t *kheap = 0; uint32_t kmalloc_int(uint32_t sz, int32_t align, uint32_t *phys) { if(kheap != 0) { void *addr = alloc(sz, (uint8_t)align, kheap); if(phys != 0) { page_t *page = get_page((uint32_t)addr, 0, kernel_directory); *phys = page->fr*0x1000 + ((uint32_t)addr&0xFFF); } return (uint32_t)addr; } else { if(align == 1 && (placement_addr & 0xFFFFF000)) { placement_addr &= 0xFFFFF000; placement_addr += 0x1000; } if(phys) *phys = placement_addr; uint32_t tmp = placement_addr; placement_addr += sz; return tmp; } } void kfree(void *p) { free(p, kheap); } uint32_t kmalloc_a(uint32_t sz) { return kmalloc_int(sz, 1, 0); } uint32_t kmalloc_p(uint32_t sz, uint32_t *phys) { return kmalloc_int(sz, 0, phys); } uint32_t kmalloc_ap(uint32_t sz, uint32_t *phys) { return kmalloc_int(sz, 1, phys); } uint32_t kmalloc(uint32_t sz) { return kmalloc_int(sz, 0, 0); } static void expand(uint32_t new_size, heap_t *heap) { // First check if new size is greater than older one ASSERT(new_size > heap->end_address - heap->start_address); // Get nearest page boundary if((new_size&0xFFFFF000) != 0) { new_size &= 0xFFFFF000; new_size += 0x1000; } // Check if new size is not greater than maximum size ASSERT(heap->start_address+new_size <= heap->max_address); uint32_t old_size = heap->end_address - heap->start_address; uint32_t it = old_size; while(it < new_size) { alloc_frame(get_page(heap->start_address+it, 1, kernel_directory), (heap->supervisor) ? 1 : 0, (heap->readonly) ? 0 : 1); it += 0x1000; // Page size } heap->end_address = heap->start_address+new_size; } static uint32_t contract(uint32_t new_size, heap_t *heap) { ASSERT(new_size < heap->end_address-heap->start_address); if(new_size&0x1000) { new_size &= 0x1000; new_size += 0x1000; } if(new_size < HEAP_MIN_SIZE) new_size = HEAP_MIN_SIZE; uint32_t old_size = heap->end_address - heap->start_address; uint32_t it = old_size - 0x1000; while(new_size < it) { free_frame(get_page(heap->start_address+it, 0, kernel_directory)); it -= 0x1000; } heap->end_address = heap->start_address + new_size; return new_size; } static uint32_t find_smallest_hole(uint32_t size, uint8_t page_align, heap_t *heap) { uint32_t it = 0; // Find smallest hole that fit our request while(it < heap->index.size) { header_t *head = (header_t*)lookup_ordered_array(it, &heap->index); if(page_align > 0) { // page must be aligned? uint32_t location = (uint32_t)head; uint32_t offset = 0; if(((location+sizeof(header_t)) & 0xFFFFF000) != 0) offset = 0x1000 - (location+sizeof(header_t))%0x1000; uint32_t hole_size = (uint32_t)head->size - offset; // Check if we can fit this page in that hole if(hole_size >= (uint32_t)size) break; } else if(head->size >= size) break; it++; } // If we didn't find anything if(it == heap->index.size) return -1; else return it; } static uint8_t header_t_less_than(void *a, void *b) { return (((header_t*)a)->size < ((header_t*)b)->size)?1:0; } heap_t *create_heap(uint32_t start, uint32_t end_addr, uint32_t max, uint8_t supervisor, uint8_t readonly) { heap_t *heap = (heap_t*)kmalloc(sizeof(heap_t)); ASSERT(start%0x1000 == 0); ASSERT(end_addr%0x1000 == 0); // Initialize the index heap->index = place_ordered_array((void*)start, HEAP_INDEX_SIZE, &header_t_less_than); // Shift start address to the right start += sizeof(type_t) * HEAP_INDEX_SIZE; // Check if start address is page-aligned if ((start & 0xFFFFF000) != 0) { start &= 0xFFFFF000; start += 0x1000; } // Store vars into heap heap->start_address = start; heap->end_address = end_addr; heap->max_address = max; heap->supervisor = supervisor; heap->readonly = readonly; header_t *hole = (header_t*)start; hole->size = end_addr - start; hole->magic = HEAP_MAGIC; hole->is_hole = 1; insert_ordered_array((void*)hole, &heap->index); return heap; } void *alloc(uint32_t size, uint8_t page_align, heap_t *heap) { uint32_t new_size = size + sizeof(header_t) + sizeof(footer_t); // Find smallest hole suitable uint32_t it = find_smallest_hole(new_size, page_align, heap); if((int32_t)it == -1) { uint32_t old_len = heap->end_address - heap->start_address; uint32_t old_end_addr = heap->end_address; // Allocate more space expand(old_len+new_size, heap); uint32_t new_len = heap->end_address - heap->start_address; it = 0; uint32_t idx = -1; uint32_t value = 0x0; while(it < heap->index.size) { uint32_t tmp = (uint32_t)lookup_ordered_array(it, &heap->index); if(tmp > value) { value = tmp; idx = it; } it++; } // If no headers has been found, add a new one if((int32_t)idx == -1) { header_t *head = (header_t*)old_end_addr; head->magic = HEAP_MAGIC; head->size = new_len - old_len; head->is_hole = 1; footer_t *foot = (footer_t*)(old_end_addr + head->size - sizeof(footer_t)); foot->magic = HEAP_MAGIC; foot->header = head; insert_ordered_array((void*)head, &heap->index); } else { header_t *head = lookup_ordered_array(idx, &heap->index); head->size += new_len - old_len; // Update the footer footer_t *foot = (footer_t*)((uint32_t)head + head->size - sizeof(footer_t)); foot->header = head; foot->magic = HEAP_MAGIC; } // Now we have enough space, so recall this function again return alloc(size, page_align, heap); } header_t *origin_hole_head = (header_t*)lookup_ordered_array(it, &heap->index); uint32_t origin_hole_p = (uint32_t)origin_hole_head; uint32_t origin_hole_s = origin_hole_head->size; // Check if we should split the hole into two parts if(origin_hole_s-new_size < sizeof(header_t)+sizeof(footer_t)) { // Increase the requested size to the size of the hole we found size += origin_hole_s-new_size; new_size = origin_hole_s; } // Check if we need to page-align data if(page_align && origin_hole_p&0xFFFFF000) { uint32_t new_loc = origin_hole_p + 0x1000 - (origin_hole_p&0xFFF) - sizeof(header_t); header_t *hole_header = (header_t*)origin_hole_p; hole_header->size = 0x1000 - (origin_hole_p&0xFFF) - sizeof(header_t); hole_header->magic = HEAP_MAGIC; hole_header->is_hole = 1; footer_t *hole_footer = (footer_t*)((uint32_t)new_loc - sizeof(header_t)); hole_footer->magic = HEAP_MAGIC; hole_footer->header = hole_header; origin_hole_p = new_loc; origin_hole_s = origin_hole_s - hole_header->size; } else remove_ordered_array(it, &heap->index); // Remove hole, since we don't need it anymore // Rewrite original header header_t *block_head = (header_t*)origin_hole_p; block_head->magic = HEAP_MAGIC; block_head->is_hole = 0; block_head->size = new_size; // and the footer footer_t *block_foot = (footer_t*)(origin_hole_p + sizeof(header_t) + size); block_foot->magic = HEAP_MAGIC; block_foot->header = block_head; // Check if we need to write a new hole after the allocated block if(origin_hole_s - new_size > 0) { header_t *hole_head = (header_t*)(origin_hole_p + sizeof(header_t) + size + sizeof(footer_t)); hole_head->magic = HEAP_MAGIC; hole_head->is_hole = 1; hole_head->size = origin_hole_s - new_size; footer_t *hole_foot = (footer_t*)((uint32_t)hole_head + origin_hole_s - new_size - sizeof(footer_t)); if((uint32_t)hole_foot < heap->end_address) { hole_foot->magic = HEAP_MAGIC; hole_foot->header = hole_head; } // Add new hole to the data structure insert_ordered_array((void*)hole_head, &heap->index); } // Return the block header return (void*)((uint32_t)block_head+sizeof(header_t)); } void free(void *p, heap_t *heap) { // Check null pointers if(p == 0) return; // Retrieve data header_t *head = (header_t*)((uint32_t)p - sizeof(header_t)); footer_t *foot = (footer_t*)((uint32_t)head + head->size - sizeof(footer_t)); ASSERT(head->magic == HEAP_MAGIC); ASSERT(foot->magic == HEAP_MAGIC); head->is_hole = 1; // Make this a hole int8_t add_to_free_hole = 1; // Add this header to free holes // Left unify footer_t *test_foot = (footer_t*)((uint32_t)head - sizeof(footer_t)); if(test_foot->magic == HEAP_MAGIC && test_foot->header->is_hole == 1 ) { uint32_t cache_s = head->size; // Store current size head = test_foot->header; // Rewrite header into new one foot->header = head; // Point footer to the new header head->size += cache_s; // Increase size add_to_free_hole = 0; // Header already in the structure. } // Right unify header_t *test_head = (header_t*)((uint32_t)foot + sizeof(footer_t)); if(test_head->magic == HEAP_MAGIC && test_head->is_hole) { head->size += test_head->size; // Increase size test_foot = (footer_t*)((uint32_t)test_foot + test_head->size - sizeof(footer_t)); foot = test_foot; // Find and remove this header from the structure uint32_t it = 0; while((it < heap->index.size) && (lookup_ordered_array(it, &heap->index) != (void*)test_head)) it++; // Check if we actually found something ASSERT(it < heap->index.size); // Remove that item remove_ordered_array(it, &heap->index); } // If footer is located at the end, we can contract the heap if((uint32_t)foot+sizeof(footer_t) == heap->end_address) { uint32_t old_len = heap->end_address-heap->start_address; uint32_t new_len = contract((uint32_t)head - heap->start_address, heap); // Check dimensions after resizing if(head->size - (old_len-new_len) > 0) { // Dimensions is still a positive value, so we can resize head->size -= old_len-new_len; foot = (footer_t*)((uint32_t)head + head->size - sizeof(footer_t)); foot->magic = HEAP_MAGIC; foot->header = head; } else { // Remove block from the structure uint32_t it = 0; while((it < heap->index.size) && (lookup_ordered_array(it, &heap->index) != (void*)test_head)) it++; // If we didn't find that block we haven't nothing to remove if(it < heap->index.size) remove_ordered_array(it, &heap->index); } } // If required by the user, add that block to the structure if(add_to_free_hole == 1) insert_ordered_array((void*)head, &heap->index); }