#include "kheap.h" /* The following function is a simple method to find the smallest hole that * fit user space request, since we will do this process many times, it's a good * idea to wrap it in a function */ static int32_t find_smallest_hole(uint32_t size, uint8_t page_align, heap_t *heap) { uint32_t i = 0; while(i < heap->index.size) { header_t *header = (header_t*)lookup_ordered_list(i, &heap->index); if(page_align > 0) { uint32_t loc = (uint32_t)header; int32_t offset = 0; if((loc+sizeof(header_t)) & 0xFFFFF000 != 0) // Page aligned memory offset = 0x1000 - (loc+sizeof(header_t))%0x1000; int32_t hole_size = (int32_t)header->size - offset; if(hole_size >= (int32_t)size) break; } else if(header->size >= size) break; i++; } // Return something according to the iterator if(i == heap->index.size) return -1; // Nothing found else return i; } static int8_t header_t_less_than(void *a, void *b) { return (((header_t*)a)->size < ((header_t*)b)->size)?1:0; } heap_t *create_heap(uint32_t start, uint32_t end, uint32_t max, uint8_t supervisor, uint8_t readonly) { heap_t *heap = (heap_t*)kmalloc(sizeof(heap_t)); //TODO: implement kmalloc ASSERT(start%0x1000 == 0); ASSERT(end%0x1000 == 0); // Init heap's index heap->index = place_ordered_list((void*)start, HEAP_INDEX_SIZE, &header_t_less_than); // Shift start address to the corrent position, where we can put on data start += sizeof(type_t)*HEAP_INDEX_SIZE; // Check if start address is page-aligned if(start & 0xFFFFF000 != 0) { start &= 0xFFFFF000; start += 0x1000; } // Fill the heap structure with start, end and max addresses heap->start_address = start; heap->end_address = end; heap->max_address = max; heap->supervisor = supervisor; heap->readonly = readonly; // Let's create one large hole in the new index header_t *hole = (header_t*)start; hole->size = end-start; hole->magic = HEAP_MAGIC; hole->is_hole = 1; insert_ordered_list((void*)hole, &heap->index); return heap; } static void expand(uint32_t new_size, heap_t *heap) { // Before anything else let's check that new size is greater than older one ASSERT(new_size > heap->end_address - heap->start_address); if(new_size&0xFFFFF000 != 0) { new_size &= 0xFFFFF000; new_size += 0x1000; } // Check if new size is not greater than maximum size ASSERT(heap->start_address+new_size <= heap->max_address); uint32_t old_size = heap->end_address-heap->start_address; uint32_t i = old_size; while(i < new_size) { alloc_frame(get_page(heap->start_address+i, 1, kernel_directory), // FIXME: (heap->supervisor)?1:0, (heap->readonly)?0:1); } } static uint32_t contract(uint32_t new_size, heap_t *heap) { // This function will be literally the opposite of the previous one ASSERT(new_size < heap->end_address-heap->start_address); if(new_size&0x1000) { new_size &= 0x1000; new_size += 0x1000; } if(new_size < HEAP_MIN_SIZE) new_size = HEAP_MIN_SIZE; uint32_t old_size = heap->end_address-heap->start_address; uint32_t i = old_size - 0x1000; while(new_size < i) { free_frame(get_page(heap->start_address+i, 0, kernel_directory)); i -= 0x1000; } heap->end_address = heap->start_address + new_size; return new_size; }