Refactoring assembly entry point
This commit is contained in:
@@ -1,9 +1,9 @@
|
||||
OBJS = paging.o kheap.o ordered_array.o
|
||||
|
||||
CC = i686-elf-gcc # cross-compiler
|
||||
CFLAGS = -m32 -fno-stack-protector -ffreestanding -Wall -Wextra -Werror -g -c
|
||||
|
||||
all:${OBJS}
|
||||
|
||||
%.o: %.c
|
||||
OBJS = paging.o kheap.o ordered_array.o
|
||||
|
||||
CC = i686-elf-gcc # cross-compiler
|
||||
CFLAGS = -m32 -fno-stack-protector -ffreestanding -Wall -Wextra -Werror -g -c
|
||||
|
||||
all:${OBJS}
|
||||
|
||||
%.o: %.c
|
||||
${CC} ${CFLAGS} $< -o $@
|
||||
@@ -1,329 +1,329 @@
|
||||
#include "kheap.h"
|
||||
#include "paging.h"
|
||||
#include "../libc/panic.h"
|
||||
|
||||
extern uint32_t end;
|
||||
uint32_t placement_addr = (uint32_t)&end;
|
||||
extern page_directory_t *kernel_directory;
|
||||
heap_t *kheap = 0;
|
||||
|
||||
uint32_t kmalloc_int(uint32_t sz, int32_t align, uint32_t *phys) {
|
||||
if(kheap != 0) {
|
||||
void *addr = alloc(sz, (uint8_t)align, kheap);
|
||||
if(phys != 0) {
|
||||
page_t *page = get_page((uint32_t)addr, 0, kernel_directory);
|
||||
*phys = page->fr*0x1000 + ((uint32_t)addr&0xFFF);
|
||||
}
|
||||
return (uint32_t)addr;
|
||||
} else {
|
||||
if(align == 1 && (placement_addr & 0xFFFFF000)) {
|
||||
placement_addr &= 0xFFFFF000;
|
||||
placement_addr += 0x1000;
|
||||
}
|
||||
if(phys)
|
||||
*phys = placement_addr;
|
||||
uint32_t tmp = placement_addr;
|
||||
placement_addr += sz;
|
||||
return tmp;
|
||||
}
|
||||
}
|
||||
|
||||
void kfree(void *p) {
|
||||
free(p, kheap);
|
||||
}
|
||||
|
||||
uint32_t kmalloc_a(uint32_t sz) {
|
||||
return kmalloc_int(sz, 1, 0);
|
||||
}
|
||||
|
||||
uint32_t kmalloc_p(uint32_t sz, uint32_t *phys) {
|
||||
return kmalloc_int(sz, 0, phys);
|
||||
}
|
||||
|
||||
uint32_t kmalloc_ap(uint32_t sz, uint32_t *phys) {
|
||||
return kmalloc_int(sz, 1, phys);
|
||||
}
|
||||
|
||||
uint32_t kmalloc(uint32_t sz) {
|
||||
return kmalloc_int(sz, 0, 0);
|
||||
}
|
||||
|
||||
static void expand(uint32_t new_size, heap_t *heap) {
|
||||
// First check if new size is greater than older one
|
||||
ASSERT(new_size > heap->end_address - heap->start_address);
|
||||
|
||||
// Get nearest page boundary
|
||||
if((new_size&0xFFFFF000) != 0) {
|
||||
new_size &= 0xFFFFF000;
|
||||
new_size += 0x1000;
|
||||
}
|
||||
// Check if new size is not greater than maximum size
|
||||
ASSERT(heap->start_address+new_size <= heap->max_address);
|
||||
|
||||
uint32_t old_size = heap->end_address - heap->start_address;
|
||||
|
||||
uint32_t it = old_size;
|
||||
while(it < new_size) {
|
||||
alloc_frame(get_page(heap->start_address+it, 1, kernel_directory),
|
||||
(heap->supervisor) ? 1 : 0, (heap->readonly) ? 0 : 1);
|
||||
it += 0x1000; // Page size
|
||||
}
|
||||
heap->end_address = heap->start_address+new_size;
|
||||
}
|
||||
|
||||
static uint32_t contract(uint32_t new_size, heap_t *heap) {
|
||||
ASSERT(new_size < heap->end_address-heap->start_address);
|
||||
|
||||
if(new_size&0x1000) {
|
||||
new_size &= 0x1000;
|
||||
new_size += 0x1000;
|
||||
}
|
||||
|
||||
if(new_size < HEAP_MIN_SIZE)
|
||||
new_size = HEAP_MIN_SIZE;
|
||||
|
||||
uint32_t old_size = heap->end_address - heap->start_address;
|
||||
uint32_t it = old_size - 0x1000;
|
||||
while(new_size < it) {
|
||||
free_frame(get_page(heap->start_address+it, 0, kernel_directory));
|
||||
it -= 0x1000;
|
||||
}
|
||||
|
||||
heap->end_address = heap->start_address + new_size;
|
||||
return new_size;
|
||||
}
|
||||
|
||||
static uint32_t find_smallest_hole(uint32_t size, uint8_t page_align, heap_t *heap) {
|
||||
uint32_t it = 0;
|
||||
|
||||
// Find smallest hole that fit our request
|
||||
while(it < heap->index.size) {
|
||||
header_t *head = (header_t*)lookup_ordered_array(it, &heap->index);
|
||||
if(page_align > 0) {
|
||||
// page must be aligned?
|
||||
uint32_t location = (uint32_t)head;
|
||||
uint32_t offset = 0;
|
||||
if(((location+sizeof(header_t)) & 0xFFFFF000) != 0)
|
||||
offset = 0x1000 - (location+sizeof(header_t))%0x1000;
|
||||
uint32_t hole_size = (uint32_t)head->size - offset;
|
||||
// Check if we can fit this page in that hole
|
||||
if(hole_size >= (uint32_t)size)
|
||||
break;
|
||||
} else if(head->size >= size)
|
||||
break;
|
||||
it++;
|
||||
}
|
||||
|
||||
// If we didn't find anything
|
||||
if(it == heap->index.size)
|
||||
return -1;
|
||||
else
|
||||
return it;
|
||||
}
|
||||
|
||||
static uint8_t header_t_less_than(void *a, void *b) {
|
||||
return (((header_t*)a)->size < ((header_t*)b)->size)?1:0;
|
||||
}
|
||||
|
||||
heap_t *create_heap(uint32_t start, uint32_t end_addr, uint32_t max, uint8_t supervisor, uint8_t readonly) {
|
||||
heap_t *heap = (heap_t*)kmalloc(sizeof(heap_t));
|
||||
|
||||
ASSERT(start%0x1000 == 0);
|
||||
ASSERT(end_addr%0x1000 == 0);
|
||||
|
||||
// Initialize the index
|
||||
heap->index = place_ordered_array((void*)start, HEAP_INDEX_SIZE, &header_t_less_than);
|
||||
// Shift start address to the right
|
||||
start += sizeof(type_t) * HEAP_INDEX_SIZE;
|
||||
|
||||
// Check if start address is page-aligned
|
||||
if ((start & 0xFFFFF000) != 0) {
|
||||
start &= 0xFFFFF000;
|
||||
start += 0x1000;
|
||||
}
|
||||
// Store vars into heap
|
||||
heap->start_address = start;
|
||||
heap->end_address = end_addr;
|
||||
heap->max_address = max;
|
||||
heap->supervisor = supervisor;
|
||||
heap->readonly = readonly;
|
||||
|
||||
header_t *hole = (header_t*)start;
|
||||
hole->size = end_addr - start;
|
||||
hole->magic = HEAP_MAGIC;
|
||||
hole->is_hole = 1;
|
||||
insert_ordered_array((void*)hole, &heap->index);
|
||||
|
||||
return heap;
|
||||
}
|
||||
|
||||
void *alloc(uint32_t size, uint8_t page_align, heap_t *heap) {
|
||||
uint32_t new_size = size + sizeof(header_t) + sizeof(footer_t);
|
||||
// Find smallest hole suitable
|
||||
uint32_t it = find_smallest_hole(new_size, page_align, heap);
|
||||
|
||||
if((int32_t)it == -1) {
|
||||
uint32_t old_len = heap->end_address - heap->start_address;
|
||||
uint32_t old_end_addr = heap->end_address;
|
||||
|
||||
// Allocate more space
|
||||
expand(old_len+new_size, heap);
|
||||
uint32_t new_len = heap->end_address - heap->start_address;
|
||||
|
||||
it = 0;
|
||||
uint32_t idx = -1; uint32_t value = 0x0;
|
||||
while(it < heap->index.size) {
|
||||
uint32_t tmp = (uint32_t)lookup_ordered_array(it, &heap->index);
|
||||
if(tmp > value) {
|
||||
value = tmp;
|
||||
idx = it;
|
||||
}
|
||||
it++;
|
||||
}
|
||||
|
||||
// If no headers has been found, add a new one
|
||||
if((int32_t)idx == -1) {
|
||||
header_t *head = (header_t*)old_end_addr;
|
||||
head->magic = HEAP_MAGIC;
|
||||
head->size = new_len - old_len;
|
||||
head->is_hole = 1;
|
||||
|
||||
footer_t *foot = (footer_t*)(old_end_addr + head->size - sizeof(footer_t));
|
||||
foot->magic = HEAP_MAGIC;
|
||||
foot->header = head;
|
||||
insert_ordered_array((void*)head, &heap->index);
|
||||
} else {
|
||||
header_t *head = lookup_ordered_array(idx, &heap->index);
|
||||
head->size += new_len - old_len;
|
||||
// Update the footer
|
||||
footer_t *foot = (footer_t*)((uint32_t)head + head->size - sizeof(footer_t));
|
||||
foot->header = head;
|
||||
foot->magic = HEAP_MAGIC;
|
||||
}
|
||||
// Now we have enough space, so recall this function again
|
||||
return alloc(size, page_align, heap);
|
||||
}
|
||||
|
||||
header_t *origin_hole_head = (header_t*)lookup_ordered_array(it, &heap->index);
|
||||
uint32_t origin_hole_p = (uint32_t)origin_hole_head;
|
||||
uint32_t origin_hole_s = origin_hole_head->size;
|
||||
// Check if we should split the hole into two parts
|
||||
if(origin_hole_s-new_size < sizeof(header_t)+sizeof(footer_t)) {
|
||||
// Increase the requested size to the size of the hole we found
|
||||
size += origin_hole_s-new_size;
|
||||
new_size = origin_hole_s;
|
||||
}
|
||||
|
||||
// Check if we need to page-align data
|
||||
if(page_align && origin_hole_p&0xFFFFF000) {
|
||||
uint32_t new_loc = origin_hole_p + 0x1000 - (origin_hole_p&0xFFF) - sizeof(header_t);
|
||||
header_t *hole_header = (header_t*)origin_hole_p;
|
||||
hole_header->size = 0x1000 - (origin_hole_p&0xFFF) - sizeof(header_t);
|
||||
hole_header->magic = HEAP_MAGIC;
|
||||
hole_header->is_hole = 1;
|
||||
footer_t *hole_footer = (footer_t*)((uint32_t)new_loc - sizeof(header_t));
|
||||
hole_footer->magic = HEAP_MAGIC;
|
||||
hole_footer->header = hole_header;
|
||||
origin_hole_p = new_loc;
|
||||
origin_hole_s = origin_hole_s - hole_header->size;
|
||||
} else
|
||||
remove_ordered_array(it, &heap->index); // Remove hole, since we don't need it anymore
|
||||
|
||||
// Rewrite original header
|
||||
header_t *block_head = (header_t*)origin_hole_p;
|
||||
block_head->magic = HEAP_MAGIC;
|
||||
block_head->is_hole = 0;
|
||||
block_head->size = new_size;
|
||||
// and the footer
|
||||
footer_t *block_foot = (footer_t*)(origin_hole_p + sizeof(header_t) + size);
|
||||
block_foot->magic = HEAP_MAGIC;
|
||||
block_foot->header = block_head;
|
||||
|
||||
// Check if we need to write a new hole after the allocated block
|
||||
if(origin_hole_s - new_size > 0) {
|
||||
header_t *hole_head = (header_t*)(origin_hole_p + sizeof(header_t) + size + sizeof(footer_t));
|
||||
hole_head->magic = HEAP_MAGIC;
|
||||
hole_head->is_hole = 1;
|
||||
hole_head->size = origin_hole_s - new_size;
|
||||
footer_t *hole_foot = (footer_t*)((uint32_t)hole_head + origin_hole_s - new_size - sizeof(footer_t));
|
||||
if((uint32_t)hole_foot < heap->end_address) {
|
||||
hole_foot->magic = HEAP_MAGIC;
|
||||
hole_foot->header = hole_head;
|
||||
}
|
||||
// Add new hole to the data structure
|
||||
insert_ordered_array((void*)hole_head, &heap->index);
|
||||
}
|
||||
|
||||
// Return the block header
|
||||
return (void*)((uint32_t)block_head+sizeof(header_t));
|
||||
}
|
||||
|
||||
void free(void *p, heap_t *heap) {
|
||||
// Check null pointers
|
||||
if(p == 0)
|
||||
return;
|
||||
|
||||
// Retrieve data
|
||||
header_t *head = (header_t*)((uint32_t)p - sizeof(header_t));
|
||||
footer_t *foot = (footer_t*)((uint32_t)head + head->size - sizeof(footer_t));
|
||||
|
||||
ASSERT(head->magic == HEAP_MAGIC);
|
||||
ASSERT(foot->magic == HEAP_MAGIC);
|
||||
|
||||
head->is_hole = 1; // Make this a hole
|
||||
int8_t add_to_free_hole = 1; // Add this header to free holes
|
||||
|
||||
// Left unify
|
||||
footer_t *test_foot = (footer_t*)((uint32_t)head - sizeof(footer_t));
|
||||
if(test_foot->magic == HEAP_MAGIC && test_foot->header->is_hole == 1 ) {
|
||||
uint32_t cache_s = head->size; // Store current size
|
||||
head = test_foot->header; // Rewrite header into new one
|
||||
foot->header = head; // Point footer to the new header
|
||||
head->size += cache_s; // Increase size
|
||||
add_to_free_hole = 0; // Header already in the structure.
|
||||
}
|
||||
|
||||
// Right unify
|
||||
header_t *test_head = (header_t*)((uint32_t)foot + sizeof(footer_t));
|
||||
if(test_head->magic == HEAP_MAGIC && test_head->is_hole) {
|
||||
head->size += test_head->size; // Increase size
|
||||
test_foot = (footer_t*)((uint32_t)test_foot + test_head->size - sizeof(footer_t));
|
||||
foot = test_foot;
|
||||
// Find and remove this header from the structure
|
||||
uint32_t it = 0;
|
||||
while((it < heap->index.size) && (lookup_ordered_array(it, &heap->index) != (void*)test_head))
|
||||
it++;
|
||||
|
||||
// Check if we actually found something
|
||||
ASSERT(it < heap->index.size);
|
||||
|
||||
// Remove that item
|
||||
remove_ordered_array(it, &heap->index);
|
||||
}
|
||||
|
||||
// If footer is located at the end, we can contract the heap
|
||||
if((uint32_t)foot+sizeof(footer_t) == heap->end_address) {
|
||||
uint32_t old_len = heap->end_address-heap->start_address;
|
||||
uint32_t new_len = contract((uint32_t)head - heap->start_address, heap);
|
||||
// Check dimensions after resizing
|
||||
if(head->size - (old_len-new_len) > 0) {
|
||||
// Dimensions is still a positive value, so we can resize
|
||||
head->size -= old_len-new_len;
|
||||
foot = (footer_t*)((uint32_t)head + head->size - sizeof(footer_t));
|
||||
foot->magic = HEAP_MAGIC;
|
||||
foot->header = head;
|
||||
} else {
|
||||
// Remove block from the structure
|
||||
uint32_t it = 0;
|
||||
while((it < heap->index.size) && (lookup_ordered_array(it, &heap->index) != (void*)test_head))
|
||||
it++;
|
||||
// If we didn't find that block we haven't nothing to remove
|
||||
if(it < heap->index.size)
|
||||
remove_ordered_array(it, &heap->index);
|
||||
}
|
||||
}
|
||||
|
||||
// If required by the user, add that block to the structure
|
||||
if(add_to_free_hole == 1)
|
||||
insert_ordered_array((void*)head, &heap->index);
|
||||
}
|
||||
#include "kheap.h"
|
||||
#include "paging.h"
|
||||
#include "../libc/panic.h"
|
||||
|
||||
extern uint32_t end;
|
||||
uint32_t placement_addr = (uint32_t)&end;
|
||||
extern page_directory_t *kernel_directory;
|
||||
heap_t *kheap = 0;
|
||||
|
||||
uint32_t kmalloc_int(uint32_t sz, int32_t align, uint32_t *phys) {
|
||||
if(kheap != 0) {
|
||||
void *addr = alloc(sz, (uint8_t)align, kheap);
|
||||
if(phys != 0) {
|
||||
page_t *page = get_page((uint32_t)addr, 0, kernel_directory);
|
||||
*phys = page->fr*0x1000 + ((uint32_t)addr&0xFFF);
|
||||
}
|
||||
return (uint32_t)addr;
|
||||
} else {
|
||||
if(align == 1 && (placement_addr & 0xFFFFF000)) {
|
||||
placement_addr &= 0xFFFFF000;
|
||||
placement_addr += 0x1000;
|
||||
}
|
||||
if(phys)
|
||||
*phys = placement_addr;
|
||||
uint32_t tmp = placement_addr;
|
||||
placement_addr += sz;
|
||||
return tmp;
|
||||
}
|
||||
}
|
||||
|
||||
void kfree(void *p) {
|
||||
free(p, kheap);
|
||||
}
|
||||
|
||||
uint32_t kmalloc_a(uint32_t sz) {
|
||||
return kmalloc_int(sz, 1, 0);
|
||||
}
|
||||
|
||||
uint32_t kmalloc_p(uint32_t sz, uint32_t *phys) {
|
||||
return kmalloc_int(sz, 0, phys);
|
||||
}
|
||||
|
||||
uint32_t kmalloc_ap(uint32_t sz, uint32_t *phys) {
|
||||
return kmalloc_int(sz, 1, phys);
|
||||
}
|
||||
|
||||
uint32_t kmalloc(uint32_t sz) {
|
||||
return kmalloc_int(sz, 0, 0);
|
||||
}
|
||||
|
||||
static void expand(uint32_t new_size, heap_t *heap) {
|
||||
// First check if new size is greater than older one
|
||||
ASSERT(new_size > heap->end_address - heap->start_address);
|
||||
|
||||
// Get nearest page boundary
|
||||
if((new_size&0xFFFFF000) != 0) {
|
||||
new_size &= 0xFFFFF000;
|
||||
new_size += 0x1000;
|
||||
}
|
||||
// Check if new size is not greater than maximum size
|
||||
ASSERT(heap->start_address+new_size <= heap->max_address);
|
||||
|
||||
uint32_t old_size = heap->end_address - heap->start_address;
|
||||
|
||||
uint32_t it = old_size;
|
||||
while(it < new_size) {
|
||||
alloc_frame(get_page(heap->start_address+it, 1, kernel_directory),
|
||||
(heap->supervisor) ? 1 : 0, (heap->readonly) ? 0 : 1);
|
||||
it += 0x1000; // Page size
|
||||
}
|
||||
heap->end_address = heap->start_address+new_size;
|
||||
}
|
||||
|
||||
static uint32_t contract(uint32_t new_size, heap_t *heap) {
|
||||
ASSERT(new_size < heap->end_address-heap->start_address);
|
||||
|
||||
if(new_size&0x1000) {
|
||||
new_size &= 0x1000;
|
||||
new_size += 0x1000;
|
||||
}
|
||||
|
||||
if(new_size < HEAP_MIN_SIZE)
|
||||
new_size = HEAP_MIN_SIZE;
|
||||
|
||||
uint32_t old_size = heap->end_address - heap->start_address;
|
||||
uint32_t it = old_size - 0x1000;
|
||||
while(new_size < it) {
|
||||
free_frame(get_page(heap->start_address+it, 0, kernel_directory));
|
||||
it -= 0x1000;
|
||||
}
|
||||
|
||||
heap->end_address = heap->start_address + new_size;
|
||||
return new_size;
|
||||
}
|
||||
|
||||
static uint32_t find_smallest_hole(uint32_t size, uint8_t page_align, heap_t *heap) {
|
||||
uint32_t it = 0;
|
||||
|
||||
// Find smallest hole that fit our request
|
||||
while(it < heap->index.size) {
|
||||
header_t *head = (header_t*)lookup_ordered_array(it, &heap->index);
|
||||
if(page_align > 0) {
|
||||
// page must be aligned?
|
||||
uint32_t location = (uint32_t)head;
|
||||
uint32_t offset = 0;
|
||||
if(((location+sizeof(header_t)) & 0xFFFFF000) != 0)
|
||||
offset = 0x1000 - (location+sizeof(header_t))%0x1000;
|
||||
uint32_t hole_size = (uint32_t)head->size - offset;
|
||||
// Check if we can fit this page in that hole
|
||||
if(hole_size >= (uint32_t)size)
|
||||
break;
|
||||
} else if(head->size >= size)
|
||||
break;
|
||||
it++;
|
||||
}
|
||||
|
||||
// If we didn't find anything
|
||||
if(it == heap->index.size)
|
||||
return -1;
|
||||
else
|
||||
return it;
|
||||
}
|
||||
|
||||
static uint8_t header_t_less_than(void *a, void *b) {
|
||||
return (((header_t*)a)->size < ((header_t*)b)->size)?1:0;
|
||||
}
|
||||
|
||||
heap_t *create_heap(uint32_t start, uint32_t end_addr, uint32_t max, uint8_t supervisor, uint8_t readonly) {
|
||||
heap_t *heap = (heap_t*)kmalloc(sizeof(heap_t));
|
||||
|
||||
ASSERT(start%0x1000 == 0);
|
||||
ASSERT(end_addr%0x1000 == 0);
|
||||
|
||||
// Initialize the index
|
||||
heap->index = place_ordered_array((void*)start, HEAP_INDEX_SIZE, &header_t_less_than);
|
||||
// Shift start address to the right
|
||||
start += sizeof(type_t) * HEAP_INDEX_SIZE;
|
||||
|
||||
// Check if start address is page-aligned
|
||||
if ((start & 0xFFFFF000) != 0) {
|
||||
start &= 0xFFFFF000;
|
||||
start += 0x1000;
|
||||
}
|
||||
// Store vars into heap
|
||||
heap->start_address = start;
|
||||
heap->end_address = end_addr;
|
||||
heap->max_address = max;
|
||||
heap->supervisor = supervisor;
|
||||
heap->readonly = readonly;
|
||||
|
||||
header_t *hole = (header_t*)start;
|
||||
hole->size = end_addr - start;
|
||||
hole->magic = HEAP_MAGIC;
|
||||
hole->is_hole = 1;
|
||||
insert_ordered_array((void*)hole, &heap->index);
|
||||
|
||||
return heap;
|
||||
}
|
||||
|
||||
void *alloc(uint32_t size, uint8_t page_align, heap_t *heap) {
|
||||
uint32_t new_size = size + sizeof(header_t) + sizeof(footer_t);
|
||||
// Find smallest hole suitable
|
||||
uint32_t it = find_smallest_hole(new_size, page_align, heap);
|
||||
|
||||
if((int32_t)it == -1) {
|
||||
uint32_t old_len = heap->end_address - heap->start_address;
|
||||
uint32_t old_end_addr = heap->end_address;
|
||||
|
||||
// Allocate more space
|
||||
expand(old_len+new_size, heap);
|
||||
uint32_t new_len = heap->end_address - heap->start_address;
|
||||
|
||||
it = 0;
|
||||
uint32_t idx = -1; uint32_t value = 0x0;
|
||||
while(it < heap->index.size) {
|
||||
uint32_t tmp = (uint32_t)lookup_ordered_array(it, &heap->index);
|
||||
if(tmp > value) {
|
||||
value = tmp;
|
||||
idx = it;
|
||||
}
|
||||
it++;
|
||||
}
|
||||
|
||||
// If no headers has been found, add a new one
|
||||
if((int32_t)idx == -1) {
|
||||
header_t *head = (header_t*)old_end_addr;
|
||||
head->magic = HEAP_MAGIC;
|
||||
head->size = new_len - old_len;
|
||||
head->is_hole = 1;
|
||||
|
||||
footer_t *foot = (footer_t*)(old_end_addr + head->size - sizeof(footer_t));
|
||||
foot->magic = HEAP_MAGIC;
|
||||
foot->header = head;
|
||||
insert_ordered_array((void*)head, &heap->index);
|
||||
} else {
|
||||
header_t *head = lookup_ordered_array(idx, &heap->index);
|
||||
head->size += new_len - old_len;
|
||||
// Update the footer
|
||||
footer_t *foot = (footer_t*)((uint32_t)head + head->size - sizeof(footer_t));
|
||||
foot->header = head;
|
||||
foot->magic = HEAP_MAGIC;
|
||||
}
|
||||
// Now we have enough space, so recall this function again
|
||||
return alloc(size, page_align, heap);
|
||||
}
|
||||
|
||||
header_t *origin_hole_head = (header_t*)lookup_ordered_array(it, &heap->index);
|
||||
uint32_t origin_hole_p = (uint32_t)origin_hole_head;
|
||||
uint32_t origin_hole_s = origin_hole_head->size;
|
||||
// Check if we should split the hole into two parts
|
||||
if(origin_hole_s-new_size < sizeof(header_t)+sizeof(footer_t)) {
|
||||
// Increase the requested size to the size of the hole we found
|
||||
size += origin_hole_s-new_size;
|
||||
new_size = origin_hole_s;
|
||||
}
|
||||
|
||||
// Check if we need to page-align data
|
||||
if(page_align && origin_hole_p&0xFFFFF000) {
|
||||
uint32_t new_loc = origin_hole_p + 0x1000 - (origin_hole_p&0xFFF) - sizeof(header_t);
|
||||
header_t *hole_header = (header_t*)origin_hole_p;
|
||||
hole_header->size = 0x1000 - (origin_hole_p&0xFFF) - sizeof(header_t);
|
||||
hole_header->magic = HEAP_MAGIC;
|
||||
hole_header->is_hole = 1;
|
||||
footer_t *hole_footer = (footer_t*)((uint32_t)new_loc - sizeof(header_t));
|
||||
hole_footer->magic = HEAP_MAGIC;
|
||||
hole_footer->header = hole_header;
|
||||
origin_hole_p = new_loc;
|
||||
origin_hole_s = origin_hole_s - hole_header->size;
|
||||
} else
|
||||
remove_ordered_array(it, &heap->index); // Remove hole, since we don't need it anymore
|
||||
|
||||
// Rewrite original header
|
||||
header_t *block_head = (header_t*)origin_hole_p;
|
||||
block_head->magic = HEAP_MAGIC;
|
||||
block_head->is_hole = 0;
|
||||
block_head->size = new_size;
|
||||
// and the footer
|
||||
footer_t *block_foot = (footer_t*)(origin_hole_p + sizeof(header_t) + size);
|
||||
block_foot->magic = HEAP_MAGIC;
|
||||
block_foot->header = block_head;
|
||||
|
||||
// Check if we need to write a new hole after the allocated block
|
||||
if(origin_hole_s - new_size > 0) {
|
||||
header_t *hole_head = (header_t*)(origin_hole_p + sizeof(header_t) + size + sizeof(footer_t));
|
||||
hole_head->magic = HEAP_MAGIC;
|
||||
hole_head->is_hole = 1;
|
||||
hole_head->size = origin_hole_s - new_size;
|
||||
footer_t *hole_foot = (footer_t*)((uint32_t)hole_head + origin_hole_s - new_size - sizeof(footer_t));
|
||||
if((uint32_t)hole_foot < heap->end_address) {
|
||||
hole_foot->magic = HEAP_MAGIC;
|
||||
hole_foot->header = hole_head;
|
||||
}
|
||||
// Add new hole to the data structure
|
||||
insert_ordered_array((void*)hole_head, &heap->index);
|
||||
}
|
||||
|
||||
// Return the block header
|
||||
return (void*)((uint32_t)block_head+sizeof(header_t));
|
||||
}
|
||||
|
||||
void free(void *p, heap_t *heap) {
|
||||
// Check null pointers
|
||||
if(p == 0)
|
||||
return;
|
||||
|
||||
// Retrieve data
|
||||
header_t *head = (header_t*)((uint32_t)p - sizeof(header_t));
|
||||
footer_t *foot = (footer_t*)((uint32_t)head + head->size - sizeof(footer_t));
|
||||
|
||||
ASSERT(head->magic == HEAP_MAGIC);
|
||||
ASSERT(foot->magic == HEAP_MAGIC);
|
||||
|
||||
head->is_hole = 1; // Make this a hole
|
||||
int8_t add_to_free_hole = 1; // Add this header to free holes
|
||||
|
||||
// Left unify
|
||||
footer_t *test_foot = (footer_t*)((uint32_t)head - sizeof(footer_t));
|
||||
if(test_foot->magic == HEAP_MAGIC && test_foot->header->is_hole == 1 ) {
|
||||
uint32_t cache_s = head->size; // Store current size
|
||||
head = test_foot->header; // Rewrite header into new one
|
||||
foot->header = head; // Point footer to the new header
|
||||
head->size += cache_s; // Increase size
|
||||
add_to_free_hole = 0; // Header already in the structure.
|
||||
}
|
||||
|
||||
// Right unify
|
||||
header_t *test_head = (header_t*)((uint32_t)foot + sizeof(footer_t));
|
||||
if(test_head->magic == HEAP_MAGIC && test_head->is_hole) {
|
||||
head->size += test_head->size; // Increase size
|
||||
test_foot = (footer_t*)((uint32_t)test_foot + test_head->size - sizeof(footer_t));
|
||||
foot = test_foot;
|
||||
// Find and remove this header from the structure
|
||||
uint32_t it = 0;
|
||||
while((it < heap->index.size) && (lookup_ordered_array(it, &heap->index) != (void*)test_head))
|
||||
it++;
|
||||
|
||||
// Check if we actually found something
|
||||
ASSERT(it < heap->index.size);
|
||||
|
||||
// Remove that item
|
||||
remove_ordered_array(it, &heap->index);
|
||||
}
|
||||
|
||||
// If footer is located at the end, we can contract the heap
|
||||
if((uint32_t)foot+sizeof(footer_t) == heap->end_address) {
|
||||
uint32_t old_len = heap->end_address-heap->start_address;
|
||||
uint32_t new_len = contract((uint32_t)head - heap->start_address, heap);
|
||||
// Check dimensions after resizing
|
||||
if(head->size - (old_len-new_len) > 0) {
|
||||
// Dimensions is still a positive value, so we can resize
|
||||
head->size -= old_len-new_len;
|
||||
foot = (footer_t*)((uint32_t)head + head->size - sizeof(footer_t));
|
||||
foot->magic = HEAP_MAGIC;
|
||||
foot->header = head;
|
||||
} else {
|
||||
// Remove block from the structure
|
||||
uint32_t it = 0;
|
||||
while((it < heap->index.size) && (lookup_ordered_array(it, &heap->index) != (void*)test_head))
|
||||
it++;
|
||||
// If we didn't find that block we haven't nothing to remove
|
||||
if(it < heap->index.size)
|
||||
remove_ordered_array(it, &heap->index);
|
||||
}
|
||||
}
|
||||
|
||||
// If required by the user, add that block to the structure
|
||||
if(add_to_free_hole == 1)
|
||||
insert_ordered_array((void*)head, &heap->index);
|
||||
}
|
||||
|
||||
@@ -1,70 +1,70 @@
|
||||
/**************************************
|
||||
* VulcanOS Kernel *
|
||||
* Developed by Marco 'icebit' Cetica *
|
||||
* (c) 2019-2021 *
|
||||
* Released under GPLv3 *
|
||||
* https://github.com/ice-bit/iceOS *
|
||||
***************************************/
|
||||
|
||||
/*** Heap implementation from James Molloy's tutorial:
|
||||
http://www.jamesmolloy.co.uk/tutorial_html/7.-The%20Heap.html ***/
|
||||
|
||||
/* This heap algorithm uses two different data structures: blocks and holes.
|
||||
* Blocks: Contiguous areas of memory containing user data
|
||||
* Holes: Special kind of blocks that are not in use, this is the result
|
||||
* of free() operation. Those spaces lend to a common problem called "Fragmentation";
|
||||
* where malloc() cannot use those spaces anymore because they are too small for any
|
||||
* kind of program. Any modern OS must have a solution to avoid this problem, but to keep
|
||||
* things simple as possible i wont implement anything like that.
|
||||
* Blocks/holes contains informations like the magic number(error checking), the type of
|
||||
* chunk(hole or block) and the size, while the footer contains only a pointer to the header
|
||||
* (and obviously an error checking flag).
|
||||
*/
|
||||
#ifndef KHEAP_H
|
||||
#define KHEAP_H
|
||||
|
||||
#define KHEAP_START 0xC0000000
|
||||
#define KHEAP_INITIAL_SIZE 0x100000
|
||||
|
||||
#define HEAP_INDEX_SIZE 0x20000
|
||||
#define HEAP_MAGIC 0x123890AB
|
||||
#define HEAP_MIN_SIZE 0x70000
|
||||
|
||||
#include <stdint.h>
|
||||
#include "ordered_array.h"
|
||||
|
||||
// Data structure for single hole/block
|
||||
typedef struct {
|
||||
uint32_t magic; // Magic number for error checking
|
||||
uint8_t is_hole; // 1 if it's an hole, 0 for a block
|
||||
uint32_t size; // Size of block
|
||||
} header_t;
|
||||
|
||||
typedef struct {
|
||||
uint32_t magic; // Same as above
|
||||
header_t *header; // Pointer to the header block
|
||||
} footer_t;
|
||||
|
||||
typedef struct {
|
||||
ordered_array_t index;
|
||||
uint32_t start_address; // Begin of allocated space
|
||||
uint32_t end_address; // End of allocated space
|
||||
uint32_t max_address; // Maximum size heap can be expanded to
|
||||
uint8_t supervisor;
|
||||
uint8_t readonly;
|
||||
} heap_t;
|
||||
|
||||
// Create a new heap
|
||||
heap_t *create_heap(uint32_t start, uint32_t end, uint32_t max, uint8_t supervisor, uint8_t readonly);
|
||||
// Allocates a contigious region of memory in size
|
||||
void *alloc(uint32_t size, uint8_t page_align, heap_t *heap);
|
||||
// Free a block allocated with alloc
|
||||
void free(void *p, heap_t *heap);
|
||||
uint32_t kmalloc_int(uint32_t sz, int32_t align, uint32_t *phys);
|
||||
uint32_t kmalloc_a(uint32_t sz);
|
||||
uint32_t kmalloc_p(uint32_t sz, uint32_t *phys);
|
||||
uint32_t kmalloc_ap(uint32_t sz, uint32_t *phys);
|
||||
uint32_t kmalloc(uint32_t sz);
|
||||
void kfree(void *p);
|
||||
|
||||
#endif
|
||||
/*****************************************
|
||||
* VulcanOS Kernel *
|
||||
* Developed by Marco 'icebit' Cetica *
|
||||
* (c) 2019-2021 *
|
||||
* Released under GPLv3 *
|
||||
* https://github.com/ice-bit/vulcanos *
|
||||
*****************************************/
|
||||
|
||||
/*** Heap implementation from James Molloy's tutorial:
|
||||
http://www.jamesmolloy.co.uk/tutorial_html/7.-The%20Heap.html ***/
|
||||
|
||||
/* This heap algorithm uses two different data structures: blocks and holes.
|
||||
* Blocks: Contiguous areas of memory containing user data
|
||||
* Holes: Special kind of blocks that are not in use, this is the result
|
||||
* of free() operation. Those spaces lend to a common problem called "Fragmentation";
|
||||
* where malloc() cannot use those spaces anymore because they are too small for any
|
||||
* kind of program. Any modern OS must have a solution to avoid this problem, but to keep
|
||||
* things simple as possible i wont implement anything like that.
|
||||
* Blocks/holes contains informations like the magic number(error checking), the type of
|
||||
* chunk(hole or block) and the size, while the footer contains only a pointer to the header
|
||||
* (and obviously an error checking flag).
|
||||
*/
|
||||
#ifndef KHEAP_H
|
||||
#define KHEAP_H
|
||||
|
||||
#define KHEAP_START 0xC0000000
|
||||
#define KHEAP_INITIAL_SIZE 0x100000
|
||||
|
||||
#define HEAP_INDEX_SIZE 0x20000
|
||||
#define HEAP_MAGIC 0x123890AB
|
||||
#define HEAP_MIN_SIZE 0x70000
|
||||
|
||||
#include <stdint.h>
|
||||
#include "ordered_array.h"
|
||||
|
||||
// Data structure for single hole/block
|
||||
typedef struct {
|
||||
uint32_t magic; // Magic number for error checking
|
||||
uint8_t is_hole; // 1 if it's an hole, 0 for a block
|
||||
uint32_t size; // Size of block
|
||||
} header_t;
|
||||
|
||||
typedef struct {
|
||||
uint32_t magic; // Same as above
|
||||
header_t *header; // Pointer to the header block
|
||||
} footer_t;
|
||||
|
||||
typedef struct {
|
||||
ordered_array_t index;
|
||||
uint32_t start_address; // Begin of allocated space
|
||||
uint32_t end_address; // End of allocated space
|
||||
uint32_t max_address; // Maximum size heap can be expanded to
|
||||
uint8_t supervisor;
|
||||
uint8_t readonly;
|
||||
} heap_t;
|
||||
|
||||
// Create a new heap
|
||||
heap_t *create_heap(uint32_t start, uint32_t end, uint32_t max, uint8_t supervisor, uint8_t readonly);
|
||||
// Allocates a contigious region of memory in size
|
||||
void *alloc(uint32_t size, uint8_t page_align, heap_t *heap);
|
||||
// Free a block allocated with alloc
|
||||
void free(void *p, heap_t *heap);
|
||||
uint32_t kmalloc_int(uint32_t sz, int32_t align, uint32_t *phys);
|
||||
uint32_t kmalloc_a(uint32_t sz);
|
||||
uint32_t kmalloc_p(uint32_t sz, uint32_t *phys);
|
||||
uint32_t kmalloc_ap(uint32_t sz, uint32_t *phys);
|
||||
uint32_t kmalloc(uint32_t sz);
|
||||
void kfree(void *p);
|
||||
|
||||
#endif
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,66 +1,66 @@
|
||||
#include "ordered_array.h"
|
||||
#include "kheap.h"
|
||||
#include "../libc/panic.h"
|
||||
#include "../libc/string.h"
|
||||
|
||||
uint8_t standard_lessthan_predicate(type_t a, type_t b) {
|
||||
if (a < b)
|
||||
return 1;
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
ordered_array_t create_ordered_array(uint32_t max_size, lessthan_predicate_t less_than) {
|
||||
ordered_array_t to_ret;
|
||||
to_ret.array = (void*)kmalloc(max_size*sizeof(type_t));
|
||||
memset(to_ret.array, 0, max_size*sizeof(type_t));
|
||||
to_ret.size = 0;
|
||||
to_ret.max_size = max_size;
|
||||
to_ret.less_than = less_than;
|
||||
return to_ret;
|
||||
}
|
||||
|
||||
ordered_array_t place_ordered_array(void *addr, uint32_t max_size, lessthan_predicate_t less_than) {
|
||||
ordered_array_t to_ret;
|
||||
to_ret.array = (type_t*)addr;
|
||||
memset(to_ret.array, 0, max_size*sizeof(type_t));
|
||||
to_ret.size = 0;
|
||||
to_ret.max_size = max_size;
|
||||
to_ret.less_than = less_than;
|
||||
return to_ret;
|
||||
}
|
||||
|
||||
void destroy_ordered_array(ordered_array_t *array) {
|
||||
kfree(array->array);
|
||||
}
|
||||
|
||||
void insert_ordered_array(type_t item, ordered_array_t *array) {
|
||||
uint32_t it = 0;
|
||||
while(it < array->size && array->less_than(array->array[it], item))
|
||||
it++;
|
||||
if(it == array->size)
|
||||
array->array[array->size++] = item;
|
||||
else {
|
||||
type_t tmp = array->array[it];
|
||||
array->array[it] = item;
|
||||
while(it < array->size) {
|
||||
it++;
|
||||
type_t tmp2 = array->array[it];
|
||||
array->array[it] = tmp;
|
||||
tmp = tmp2;
|
||||
}
|
||||
array->size++;
|
||||
}
|
||||
}
|
||||
|
||||
type_t lookup_ordered_array(uint32_t i, ordered_array_t *array) {
|
||||
return array->array[i];
|
||||
}
|
||||
|
||||
void remove_ordered_array(uint32_t i, ordered_array_t *array) {
|
||||
while(i < array->size) {
|
||||
array->array[i] = array->array[i+1];
|
||||
i++;
|
||||
}
|
||||
array->size--;
|
||||
}
|
||||
#include "ordered_array.h"
|
||||
#include "kheap.h"
|
||||
#include "../libc/panic.h"
|
||||
#include "../libc/string.h"
|
||||
|
||||
uint8_t standard_lessthan_predicate(type_t a, type_t b) {
|
||||
if (a < b)
|
||||
return 1;
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
ordered_array_t create_ordered_array(uint32_t max_size, lessthan_predicate_t less_than) {
|
||||
ordered_array_t to_ret;
|
||||
to_ret.array = (void*)kmalloc(max_size*sizeof(type_t));
|
||||
memset(to_ret.array, 0, max_size*sizeof(type_t));
|
||||
to_ret.size = 0;
|
||||
to_ret.max_size = max_size;
|
||||
to_ret.less_than = less_than;
|
||||
return to_ret;
|
||||
}
|
||||
|
||||
ordered_array_t place_ordered_array(void *addr, uint32_t max_size, lessthan_predicate_t less_than) {
|
||||
ordered_array_t to_ret;
|
||||
to_ret.array = (type_t*)addr;
|
||||
memset(to_ret.array, 0, max_size*sizeof(type_t));
|
||||
to_ret.size = 0;
|
||||
to_ret.max_size = max_size;
|
||||
to_ret.less_than = less_than;
|
||||
return to_ret;
|
||||
}
|
||||
|
||||
void destroy_ordered_array(ordered_array_t *array) {
|
||||
kfree(array->array);
|
||||
}
|
||||
|
||||
void insert_ordered_array(type_t item, ordered_array_t *array) {
|
||||
uint32_t it = 0;
|
||||
while(it < array->size && array->less_than(array->array[it], item))
|
||||
it++;
|
||||
if(it == array->size)
|
||||
array->array[array->size++] = item;
|
||||
else {
|
||||
type_t tmp = array->array[it];
|
||||
array->array[it] = item;
|
||||
while(it < array->size) {
|
||||
it++;
|
||||
type_t tmp2 = array->array[it];
|
||||
array->array[it] = tmp;
|
||||
tmp = tmp2;
|
||||
}
|
||||
array->size++;
|
||||
}
|
||||
}
|
||||
|
||||
type_t lookup_ordered_array(uint32_t i, ordered_array_t *array) {
|
||||
return array->array[i];
|
||||
}
|
||||
|
||||
void remove_ordered_array(uint32_t i, ordered_array_t *array) {
|
||||
while(i < array->size) {
|
||||
array->array[i] = array->array[i+1];
|
||||
i++;
|
||||
}
|
||||
array->size--;
|
||||
}
|
||||
|
||||
@@ -1,39 +1,39 @@
|
||||
/**************************************
|
||||
* VulcanOS Kernel *
|
||||
* Developed by Marco 'icebit' Cetica *
|
||||
* (c) 2019-2021 *
|
||||
* Released under GPLv3 *
|
||||
* https://github.com/ice-bit/iceOS *
|
||||
***************************************/
|
||||
#ifndef ORDERED_ARRAY_H
|
||||
#define ORDERED_ARRAY_H
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
/* Our list is always in a 'sorted state',
|
||||
* it can store anything that can be casted
|
||||
* to void* */
|
||||
typedef void* type_t;
|
||||
/* The following predicate should return non-zero
|
||||
* if the first argument is less than the second */
|
||||
typedef uint8_t (*lessthan_predicate_t)(type_t,type_t);
|
||||
typedef struct {
|
||||
type_t *array;
|
||||
uint32_t size;
|
||||
uint32_t max_size;
|
||||
lessthan_predicate_t less_than;
|
||||
} ordered_array_t;
|
||||
|
||||
uint8_t standard_lessthan_predicate(type_t a, type_t b);
|
||||
|
||||
// Create a new ordered array
|
||||
ordered_array_t create_ordered_array(uint32_t max_size, lessthan_predicate_t less_than);
|
||||
ordered_array_t place_ordered_array(void *addr, uint32_t max_size, lessthan_predicate_t less_than);
|
||||
// Destroy an ordered array
|
||||
void destroy_ordered_array(ordered_array_t *array);
|
||||
// Add an item into the array
|
||||
void insert_ordered_array(type_t item, ordered_array_t *array);
|
||||
type_t lookup_ordered_array(uint32_t i, ordered_array_t *array);
|
||||
void remove_ordered_array(uint32_t i, ordered_array_t *array);
|
||||
|
||||
#endif
|
||||
/*****************************************
|
||||
* VulcanOS Kernel *
|
||||
* Developed by Marco 'icebit' Cetica *
|
||||
* (c) 2019-2021 *
|
||||
* Released under GPLv3 *
|
||||
* https://github.com/ice-bit/vulcanos *
|
||||
*****************************************/
|
||||
#ifndef ORDERED_ARRAY_H
|
||||
#define ORDERED_ARRAY_H
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
/* Our list is always in a 'sorted state',
|
||||
* it can store anything that can be casted
|
||||
* to void* */
|
||||
typedef void* type_t;
|
||||
/* The following predicate should return non-zero
|
||||
* if the first argument is less than the second */
|
||||
typedef uint8_t (*lessthan_predicate_t)(type_t,type_t);
|
||||
typedef struct {
|
||||
type_t *array;
|
||||
uint32_t size;
|
||||
uint32_t max_size;
|
||||
lessthan_predicate_t less_than;
|
||||
} ordered_array_t;
|
||||
|
||||
uint8_t standard_lessthan_predicate(type_t a, type_t b);
|
||||
|
||||
// Create a new ordered array
|
||||
ordered_array_t create_ordered_array(uint32_t max_size, lessthan_predicate_t less_than);
|
||||
ordered_array_t place_ordered_array(void *addr, uint32_t max_size, lessthan_predicate_t less_than);
|
||||
// Destroy an ordered array
|
||||
void destroy_ordered_array(ordered_array_t *array);
|
||||
// Add an item into the array
|
||||
void insert_ordered_array(type_t item, ordered_array_t *array);
|
||||
type_t lookup_ordered_array(uint32_t i, ordered_array_t *array);
|
||||
void remove_ordered_array(uint32_t i, ordered_array_t *array);
|
||||
|
||||
#endif
|
||||
|
||||
@@ -1,141 +1,141 @@
|
||||
#include "paging.h"
|
||||
#include "../libc/string.h"
|
||||
#include "../libc/panic.h"
|
||||
#include "../libc/stdio.h"
|
||||
#include "../drivers/tty.h"
|
||||
|
||||
// External definitions from kheap.c
|
||||
extern uint32_t placement_addr;
|
||||
extern heap_t *kheap;
|
||||
|
||||
// Bitset of frames, used or free
|
||||
uint32_t *frame_allocations;
|
||||
uint32_t nframes; // Number of physical frames
|
||||
page_directory_t *kernel_directory = 0;
|
||||
page_directory_t *current_directory = 0;
|
||||
|
||||
static void set_frame(uint32_t addr) {
|
||||
uint32_t frame = FRAME(addr);
|
||||
uint32_t frame_alloc_s = FRAME_SECTION(frame);
|
||||
uint32_t frame_alloc_o = FRAME_OFFSET(frame);
|
||||
frame_allocations[frame_alloc_s] |= (1 << frame_alloc_o);
|
||||
}
|
||||
|
||||
static void clear_frame(uint32_t addr) {
|
||||
uint32_t frame = FRAME(addr);
|
||||
uint32_t frame_alloc_s = FRAME_SECTION(frame);
|
||||
uint32_t frame_alloc_o = FRAME_OFFSET(frame);
|
||||
frame_allocations[frame_alloc_s] &= ~(1 << frame_alloc_o);
|
||||
}
|
||||
|
||||
static uint32_t first_frame() {
|
||||
uint32_t nsections = nframes / FRAME_ALLOCATIONS_SECTION_SIZE;
|
||||
for(uint32_t sec = 0; sec < nsections; sec++)
|
||||
if(frame_allocations[sec] != USED_FRAME_SECTION)
|
||||
for(uint32_t idx = 0; idx < FRAME_ALLOCATIONS_SECTION_SIZE; idx++)
|
||||
if(!(frame_allocations[sec] & (0x1 << idx)))
|
||||
return (sec*FRAME_ALLOCATIONS_SECTION_SIZE) + idx;
|
||||
return nsections * FRAME_ALLOCATIONS_SECTION_SIZE;
|
||||
}
|
||||
|
||||
void alloc_frame(page_t *page, int32_t is_super, int32_t is_write) {
|
||||
if(page->fr != 0)
|
||||
return;
|
||||
else {
|
||||
uint32_t fframe = first_frame();
|
||||
if(fframe == (uint32_t)-1) {
|
||||
PANIC("No free frames availables!");
|
||||
} else {
|
||||
// Set free frames to the page
|
||||
page->pr = PAGE_PRESENT;
|
||||
page->rw = (is_write) ? PAGE_READ_WRITE : PAGE_READ_ONLY;
|
||||
page->us = (is_super) ? PAGE_SUPERVISOR : PAGE_USER;
|
||||
page->fr = fframe;
|
||||
// Set new frames as used
|
||||
uint32_t physical_addr = fframe * FRAME_SIZE;
|
||||
set_frame(physical_addr);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void free_frame(page_t *page) {
|
||||
uint32_t frame;
|
||||
if(!(frame=page->fr))
|
||||
return; // page doesn't have a frame in first place
|
||||
else {
|
||||
clear_frame(frame);
|
||||
page->fr = 0x0;
|
||||
}
|
||||
}
|
||||
|
||||
void init_paging() {
|
||||
// Setup frame allocation
|
||||
nframes = PHYSICAL_MEM_SIZE / FRAME_SIZE;
|
||||
frame_allocations = (uint32_t*)kmalloc(nframes/FRAME_ALLOCATIONS_SECTION_SIZE);
|
||||
memset(frame_allocations, 0, nframes/FRAME_ALLOCATIONS_SECTION_SIZE);
|
||||
|
||||
// Setup page directory
|
||||
kernel_directory = (page_directory_t*)kmalloc_a(sizeof(page_directory_t));
|
||||
memset(kernel_directory, 0, sizeof(page_directory_t));
|
||||
current_directory = kernel_directory;
|
||||
|
||||
// Map heap pages
|
||||
for(uint32_t i = KHEAP_START; i < KHEAP_START + KHEAP_INITIAL_SIZE; i += FRAME_SIZE)
|
||||
get_page(i, 1, kernel_directory);
|
||||
|
||||
// Setup identity map
|
||||
for(uint32_t i = 0; i < placement_addr + FRAME_SIZE; i += FRAME_SIZE)
|
||||
alloc_frame(get_page(i, 1, kernel_directory), 0, 0);
|
||||
|
||||
// Allocate heap pages
|
||||
for(uint32_t i = KHEAP_START; i < KHEAP_START+KHEAP_INITIAL_SIZE; i += FRAME_SIZE)
|
||||
alloc_frame(get_page(i, 1, kernel_directory), 0, 0);
|
||||
|
||||
// Register a new ISR to listen to IRQ 14
|
||||
register_interrupt_handler(14, page_fault);
|
||||
enable_paging(kernel_directory);
|
||||
kheap = create_heap(KHEAP_START, KHEAP_START+KHEAP_INITIAL_SIZE, 0xCFFFF000, 0, 0);
|
||||
}
|
||||
|
||||
void enable_paging(page_directory_t *dir) {
|
||||
current_directory = dir;
|
||||
asm volatile("mov %0, %%cr3" :: "r"(&dir->page_tables_physical));
|
||||
uint32_t cr0;
|
||||
asm volatile("mov %%cr0, %0" : "=r"(cr0));
|
||||
cr0 |= 0x80000000; // Correct code to enable paging
|
||||
asm volatile("mov %0, %%cr0" :: "r"(cr0));
|
||||
}
|
||||
|
||||
page_t *get_page(uint32_t address, int32_t make, page_directory_t *dir) {
|
||||
address /= 0x1000; // turn address into an index
|
||||
uint32_t table_idx = address / 1024; // Find page that contains the address
|
||||
if(dir->page_tables_virtual[table_idx])
|
||||
return &dir->page_tables_virtual[table_idx]->pages[address%1024];
|
||||
else if(make) {
|
||||
uint32_t tmp;
|
||||
dir->page_tables_virtual[table_idx] = (page_table_t*)kmalloc_ap(sizeof(page_table_t), &tmp);
|
||||
memset(dir->page_tables_virtual[table_idx], 0, 0x1000);
|
||||
dir->page_tables_physical[table_idx] = tmp | 0x7;
|
||||
return &dir->page_tables_virtual[table_idx]->pages[address%1024];
|
||||
} else
|
||||
return 0;
|
||||
}
|
||||
|
||||
void page_fault(registers_t regs) {
|
||||
// Handle a page fault
|
||||
uint32_t faulting_addr;
|
||||
asm volatile("mov %%cr2, %0" : "=r" (faulting_addr));
|
||||
|
||||
// Gracefully print the error
|
||||
kprint((uint8_t*)"\nPage fault! ( ");
|
||||
if(!(regs.err_code & 0x1))
|
||||
kprint((uint8_t*)"Present ");
|
||||
if(regs.err_code & 0x2)
|
||||
kprint((uint8_t*)"Read-Only ");
|
||||
if(regs.err_code & 0x4)
|
||||
kprint((uint8_t*)"User-Mode ");
|
||||
if(regs.err_code & 0x8)
|
||||
kprint((uint8_t*)"Reserved");
|
||||
printf(") at %x\n", faulting_addr);
|
||||
PANIC("Page fault");
|
||||
}
|
||||
#include "paging.h"
|
||||
#include "../libc/string.h"
|
||||
#include "../libc/panic.h"
|
||||
#include "../libc/stdio.h"
|
||||
#include "../drivers/tty.h"
|
||||
|
||||
// External definitions from kheap.c
|
||||
extern uint32_t placement_addr;
|
||||
extern heap_t *kheap;
|
||||
|
||||
// Bitset of frames, used or free
|
||||
uint32_t *frame_allocations;
|
||||
uint32_t nframes; // Number of physical frames
|
||||
page_directory_t *kernel_directory = 0;
|
||||
page_directory_t *current_directory = 0;
|
||||
|
||||
static void set_frame(uint32_t addr) {
|
||||
uint32_t frame = FRAME(addr);
|
||||
uint32_t frame_alloc_s = FRAME_SECTION(frame);
|
||||
uint32_t frame_alloc_o = FRAME_OFFSET(frame);
|
||||
frame_allocations[frame_alloc_s] |= (1 << frame_alloc_o);
|
||||
}
|
||||
|
||||
static void clear_frame(uint32_t addr) {
|
||||
uint32_t frame = FRAME(addr);
|
||||
uint32_t frame_alloc_s = FRAME_SECTION(frame);
|
||||
uint32_t frame_alloc_o = FRAME_OFFSET(frame);
|
||||
frame_allocations[frame_alloc_s] &= ~(1 << frame_alloc_o);
|
||||
}
|
||||
|
||||
static uint32_t first_frame() {
|
||||
uint32_t nsections = nframes / FRAME_ALLOCATIONS_SECTION_SIZE;
|
||||
for(uint32_t sec = 0; sec < nsections; sec++)
|
||||
if(frame_allocations[sec] != USED_FRAME_SECTION)
|
||||
for(uint32_t idx = 0; idx < FRAME_ALLOCATIONS_SECTION_SIZE; idx++)
|
||||
if(!(frame_allocations[sec] & (0x1 << idx)))
|
||||
return (sec*FRAME_ALLOCATIONS_SECTION_SIZE) + idx;
|
||||
return nsections * FRAME_ALLOCATIONS_SECTION_SIZE;
|
||||
}
|
||||
|
||||
void alloc_frame(page_t *page, int32_t is_super, int32_t is_write) {
|
||||
if(page->fr != 0)
|
||||
return;
|
||||
else {
|
||||
uint32_t fframe = first_frame();
|
||||
if(fframe == (uint32_t)-1) {
|
||||
PANIC("No free frames availables!");
|
||||
} else {
|
||||
// Set free frames to the page
|
||||
page->pr = PAGE_PRESENT;
|
||||
page->rw = (is_write) ? PAGE_READ_WRITE : PAGE_READ_ONLY;
|
||||
page->us = (is_super) ? PAGE_SUPERVISOR : PAGE_USER;
|
||||
page->fr = fframe;
|
||||
// Set new frames as used
|
||||
uint32_t physical_addr = fframe * FRAME_SIZE;
|
||||
set_frame(physical_addr);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void free_frame(page_t *page) {
|
||||
uint32_t frame;
|
||||
if(!(frame=page->fr))
|
||||
return; // page doesn't have a frame in first place
|
||||
else {
|
||||
clear_frame(frame);
|
||||
page->fr = 0x0;
|
||||
}
|
||||
}
|
||||
|
||||
void init_paging() {
|
||||
// Setup frame allocation
|
||||
nframes = PHYSICAL_MEM_SIZE / FRAME_SIZE;
|
||||
frame_allocations = (uint32_t*)kmalloc(nframes/FRAME_ALLOCATIONS_SECTION_SIZE);
|
||||
memset(frame_allocations, 0, nframes/FRAME_ALLOCATIONS_SECTION_SIZE);
|
||||
|
||||
// Setup page directory
|
||||
kernel_directory = (page_directory_t*)kmalloc_a(sizeof(page_directory_t));
|
||||
memset(kernel_directory, 0, sizeof(page_directory_t));
|
||||
current_directory = kernel_directory;
|
||||
|
||||
// Map heap pages
|
||||
for(uint32_t i = KHEAP_START; i < KHEAP_START + KHEAP_INITIAL_SIZE; i += FRAME_SIZE)
|
||||
get_page(i, 1, kernel_directory);
|
||||
|
||||
// Setup identity map
|
||||
for(uint32_t i = 0; i < placement_addr + FRAME_SIZE; i += FRAME_SIZE)
|
||||
alloc_frame(get_page(i, 1, kernel_directory), 0, 0);
|
||||
|
||||
// Allocate heap pages
|
||||
for(uint32_t i = KHEAP_START; i < KHEAP_START+KHEAP_INITIAL_SIZE; i += FRAME_SIZE)
|
||||
alloc_frame(get_page(i, 1, kernel_directory), 0, 0);
|
||||
|
||||
// Register a new ISR to listen to IRQ 14
|
||||
register_interrupt_handler(14, page_fault);
|
||||
enable_paging(kernel_directory);
|
||||
kheap = create_heap(KHEAP_START, KHEAP_START+KHEAP_INITIAL_SIZE, 0xCFFFF000, 0, 0);
|
||||
}
|
||||
|
||||
void enable_paging(page_directory_t *dir) {
|
||||
current_directory = dir;
|
||||
asm volatile("mov %0, %%cr3" :: "r"(&dir->page_tables_physical));
|
||||
uint32_t cr0;
|
||||
asm volatile("mov %%cr0, %0" : "=r"(cr0));
|
||||
cr0 |= 0x80000000; // Correct code to enable paging
|
||||
asm volatile("mov %0, %%cr0" :: "r"(cr0));
|
||||
}
|
||||
|
||||
page_t *get_page(uint32_t address, int32_t make, page_directory_t *dir) {
|
||||
address /= 0x1000; // turn address into an index
|
||||
uint32_t table_idx = address / 1024; // Find page that contains the address
|
||||
if(dir->page_tables_virtual[table_idx])
|
||||
return &dir->page_tables_virtual[table_idx]->pages[address%1024];
|
||||
else if(make) {
|
||||
uint32_t tmp;
|
||||
dir->page_tables_virtual[table_idx] = (page_table_t*)kmalloc_ap(sizeof(page_table_t), &tmp);
|
||||
memset(dir->page_tables_virtual[table_idx], 0, 0x1000);
|
||||
dir->page_tables_physical[table_idx] = tmp | 0x7;
|
||||
return &dir->page_tables_virtual[table_idx]->pages[address%1024];
|
||||
} else
|
||||
return 0;
|
||||
}
|
||||
|
||||
void page_fault(registers_t regs) {
|
||||
// Handle a page fault
|
||||
uint32_t faulting_addr;
|
||||
asm volatile("mov %%cr2, %0" : "=r" (faulting_addr));
|
||||
|
||||
// Gracefully print the error
|
||||
kprint((uint8_t*)"\nPage fault! ( ");
|
||||
if(!(regs.err_code & 0x1))
|
||||
kprint((uint8_t*)"Present ");
|
||||
if(regs.err_code & 0x2)
|
||||
kprint((uint8_t*)"Read-Only ");
|
||||
if(regs.err_code & 0x4)
|
||||
kprint((uint8_t*)"User-Mode ");
|
||||
if(regs.err_code & 0x8)
|
||||
kprint((uint8_t*)"Reserved");
|
||||
printf(") at %x\n", faulting_addr);
|
||||
PANIC("Page fault");
|
||||
}
|
||||
|
||||
@@ -1,81 +1,81 @@
|
||||
/**************************************
|
||||
* VulcanOS Kernel *
|
||||
* Developed by Marco 'icebit' Cetica *
|
||||
* (c) 2019-2021 *
|
||||
* Released under GPLv3 *
|
||||
* https://github.com/ice-bit/iceOS *
|
||||
***************************************/
|
||||
#ifndef PAGING_H
|
||||
#define PAGING_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include "../drivers/isr.h"
|
||||
#include "kheap.h"
|
||||
|
||||
#define FRAME_SIZE 4096
|
||||
#define PAGE_TABLE_SIZE 1024
|
||||
#define PAGE_DIRECTORY_SIZE 1024
|
||||
#define PAGE_NOT_PRESENT 0
|
||||
#define PAGE_PRESENT 1
|
||||
#define PAGE_READ_ONLY 0
|
||||
#define PAGE_READ_WRITE 1
|
||||
#define PAGE_USER 0
|
||||
#define PAGE_SUPERVISOR 0
|
||||
#define PAGE_SIZE_4KB 0
|
||||
#define PAGE_SIZE_4MB 1
|
||||
// Frames macros
|
||||
#define FRAME_ALLOCATIONS_SECTION_SIZE 32
|
||||
#define USED_FRAME_SECTION 0xFFFFFFFF
|
||||
#define FREE_FRAME_SECTION 0x00000000
|
||||
|
||||
#define FRAME(addr) (addr/FRAME_SIZE)
|
||||
#define FRAME_SECTION(frame) (frame/FRAME_ALLOCATIONS_SECTION_SIZE)
|
||||
#define FRAME_OFFSET(frame) (frame%FRAME_ALLOCATIONS_SECTION_SIZE)
|
||||
|
||||
// Set physical memory to 15 MiB
|
||||
#define PHYSICAL_MEM_SIZE 0x10000000
|
||||
|
||||
struct page { // Single page structure, from intel's developer manual
|
||||
uint8_t pr : 1; // Present: 1 to map 4KB page
|
||||
uint8_t rw : 1; // Read/Write mode
|
||||
uint8_t us : 1; // if 0, user mode access aren't allowed to the page
|
||||
uint8_t pw : 1; // Page-level write through
|
||||
uint8_t pc : 1; // Page-level cache disable
|
||||
uint8_t ac : 1; // 1 if we have accessed 4kb page
|
||||
uint8_t di : 1; // 1 if page has been written(dirty)
|
||||
uint8_t pa : 1; // Unused bit
|
||||
uint8_t gl : 1; // 1 if page is global
|
||||
uint8_t ig : 3; // Unused bit
|
||||
uint32_t fr: 20; // Physical address of frame
|
||||
} __attribute__((packed));
|
||||
typedef struct page page_t;
|
||||
|
||||
typedef struct page_table {
|
||||
page_t pages[PAGE_TABLE_SIZE];
|
||||
} page_table_t;
|
||||
|
||||
/* Holds 2 arrays for each page directory
|
||||
* one holds the physical address, while
|
||||
* the other one holds the virtual address
|
||||
* (to write/read to it) */
|
||||
typedef struct page_directory {
|
||||
page_table_t *page_tables_virtual[PAGE_DIRECTORY_SIZE];
|
||||
uint32_t page_tables_physical[PAGE_DIRECTORY_SIZE];
|
||||
} page_directory_t;
|
||||
|
||||
// Setup environment, page directories and enable paging
|
||||
void init_paging();
|
||||
// Perform the "enable-paging" operation to the right register
|
||||
void enable_paging(page_directory_t *dir);
|
||||
// Retrieve a pointer from the given page
|
||||
page_t *get_page(uint32_t address, int32_t make, page_directory_t *dir);
|
||||
// Identity map(phys = virtual addr) to access it as if paging wasn't enabled
|
||||
void identity_map();
|
||||
// Delete a frame
|
||||
void free_frame(page_t *page);
|
||||
// Allocate a new frame
|
||||
void alloc_frame(page_t *page, int32_t is_super, int32_t is_write);
|
||||
// Page faults handler(ISR recorder)
|
||||
void page_fault(registers_t regs);
|
||||
|
||||
#endif
|
||||
/*****************************************
|
||||
* VulcanOS Kernel *
|
||||
* Developed by Marco 'icebit' Cetica *
|
||||
* (c) 2019-2021 *
|
||||
* Released under GPLv3 *
|
||||
* https://github.com/ice-bit/vulcanos *
|
||||
*****************************************/
|
||||
#ifndef PAGING_H
|
||||
#define PAGING_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include "../drivers/isr.h"
|
||||
#include "kheap.h"
|
||||
|
||||
#define FRAME_SIZE 4096
|
||||
#define PAGE_TABLE_SIZE 1024
|
||||
#define PAGE_DIRECTORY_SIZE 1024
|
||||
#define PAGE_NOT_PRESENT 0
|
||||
#define PAGE_PRESENT 1
|
||||
#define PAGE_READ_ONLY 0
|
||||
#define PAGE_READ_WRITE 1
|
||||
#define PAGE_USER 0
|
||||
#define PAGE_SUPERVISOR 0
|
||||
#define PAGE_SIZE_4KB 0
|
||||
#define PAGE_SIZE_4MB 1
|
||||
// Frames macros
|
||||
#define FRAME_ALLOCATIONS_SECTION_SIZE 32
|
||||
#define USED_FRAME_SECTION 0xFFFFFFFF
|
||||
#define FREE_FRAME_SECTION 0x00000000
|
||||
|
||||
#define FRAME(addr) (addr/FRAME_SIZE)
|
||||
#define FRAME_SECTION(frame) (frame/FRAME_ALLOCATIONS_SECTION_SIZE)
|
||||
#define FRAME_OFFSET(frame) (frame%FRAME_ALLOCATIONS_SECTION_SIZE)
|
||||
|
||||
// Set physical memory to 15 MiB
|
||||
#define PHYSICAL_MEM_SIZE 0x10000000
|
||||
|
||||
struct page { // Single page structure, from intel's developer manual
|
||||
uint8_t pr : 1; // Present: 1 to map 4KB page
|
||||
uint8_t rw : 1; // Read/Write mode
|
||||
uint8_t us : 1; // if 0, user mode access aren't allowed to the page
|
||||
uint8_t pw : 1; // Page-level write through
|
||||
uint8_t pc : 1; // Page-level cache disable
|
||||
uint8_t ac : 1; // 1 if we have accessed 4kb page
|
||||
uint8_t di : 1; // 1 if page has been written(dirty)
|
||||
uint8_t pa : 1; // Unused bit
|
||||
uint8_t gl : 1; // 1 if page is global
|
||||
uint8_t ig : 3; // Unused bit
|
||||
uint32_t fr: 20; // Physical address of frame
|
||||
} __attribute__((packed));
|
||||
typedef struct page page_t;
|
||||
|
||||
typedef struct page_table {
|
||||
page_t pages[PAGE_TABLE_SIZE];
|
||||
} page_table_t;
|
||||
|
||||
/* Holds 2 arrays for each page directory
|
||||
* one holds the physical address, while
|
||||
* the other one holds the virtual address
|
||||
* (to write/read to it) */
|
||||
typedef struct page_directory {
|
||||
page_table_t *page_tables_virtual[PAGE_DIRECTORY_SIZE];
|
||||
uint32_t page_tables_physical[PAGE_DIRECTORY_SIZE];
|
||||
} page_directory_t;
|
||||
|
||||
// Setup environment, page directories and enable paging
|
||||
void init_paging();
|
||||
// Perform the "enable-paging" operation to the right register
|
||||
void enable_paging(page_directory_t *dir);
|
||||
// Retrieve a pointer from the given page
|
||||
page_t *get_page(uint32_t address, int32_t make, page_directory_t *dir);
|
||||
// Identity map(phys = virtual addr) to access it as if paging wasn't enabled
|
||||
void identity_map();
|
||||
// Delete a frame
|
||||
void free_frame(page_t *page);
|
||||
// Allocate a new frame
|
||||
void alloc_frame(page_t *page, int32_t is_super, int32_t is_write);
|
||||
// Page faults handler(ISR recorder)
|
||||
void page_fault(registers_t regs);
|
||||
|
||||
#endif
|
||||
|
||||
Reference in New Issue
Block a user