Files
datum/usage.c

527 lines
15 KiB
C

/*
* Sample usage of the Datum library.
*
* This program is a complete example on how to use Datum
* with *verbose* error checking. For a more minimal usage, you may want to ignore
* return messages/codes and get straight to the actual result. See the early
* part of the README.md file for such example (use it at your own risk).
*
* Developed by Marco Cetica (c) 2025, <email@marcocetica.com>
*
*/
#define SEP(SIZE) do { \
for (size_t i = 0; i < SIZE; i++) { \
printf("="); \
}; \
puts("\n"); \
} while(0)
#define UNUSED(X) (void)(X)
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "src/vector.h"
#include "src/map.h"
#include "src/bigint.h"
static int vector_usage(void);
static int map_usage(void);
static int bigint_usage(void);
static vector_order_t cmp_int_asc(const void *x, const void *y);
static vector_order_t cmp_int_desc(const void *x, const void *y);
static void square(void *element, void *env);
static int is_even(const void *element, void *env);
static void adder(void *accumulator, const void *element, void *env);
int main(void) {
int st;
st = vector_usage();
if (st) { return st; }
SEP(50);
st = map_usage();
if (st) { return st; }
SEP(50);
st = bigint_usage();
if (st) { return st; }
return 0;
}
vector_order_t cmp_int_asc(const void *x, const void *y) {
int x_int = *(const int*)x;
int y_int = *(const int*)y;
if (x_int < y_int) return VECTOR_ORDER_LT;
if (x_int > y_int) return VECTOR_ORDER_GT;
return VECTOR_ORDER_EQ;
}
vector_order_t cmp_int_desc(const void *x, const void *y) {
return cmp_int_asc(y, x);
}
void square(void *element, void *env) {
UNUSED(env);
int *value = (int*)element;
*value = (*value) * (*value);
}
int is_even(const void *element, void *env) {
UNUSED(env);
int value = *(int*)element;
return (value % 2) == 0;
}
void adder(void *accumulator, const void *element, void *env) {
UNUSED(env);
*(int*)accumulator += *(int*)element;
}
int vector_usage(void) {
// Create a vector of 3 integers
vector_result_t res = vector_new(3, sizeof(int));
if (res.status != VECTOR_OK) {
printf("Error while creating vector: %s\n", res.message);
return 1;
}
vector_t *vector = res.value.vector;
// Push some values to trigger reallocation
for (int idx = 0; idx < 5; idx++) {
vector_result_t add_res = vector_push(vector, &idx);
if (add_res.status != VECTOR_OK) {
printf("Error while adding elements: %s\n", add_res.message);
return 1;
}
}
// Print vector size and capacity
printf("Vector size (should be 5): %zu\n", vector_size(vector));
printf("Vector capacity (should be > 5): %zu\n\n", vector_capacity(vector));
// Print the whole vector
size_t sz = vector_size(vector);
for (size_t idx = 0; idx < sz; idx++) {
vector_result_t get_res = vector_get(vector, idx);
if (get_res.status != VECTOR_OK) {
printf("Cannot retrieve vec[%zu]: %s\n", idx, get_res.message);
return 1;
} else {
int val = *(int *)get_res.value.element;
printf("vec[%zu] (should be '%zu') = %d\n", idx, idx, val);
}
}
// Set an element at index 2
int new_val = 0xBABE;
vector_result_t set_res = vector_set(vector, 2, &new_val);
if (set_res.status == VECTOR_OK) {
printf("vec[2] (should be updated to 'BABE'): %X\n\n", new_val);
}
// Pop last element
vector_result_t pop_res = vector_pop(vector);
if (pop_res.status == VECTOR_OK) {
int val = *(int *)pop_res.value.element;
printf("Popped value (should be 5) : %d\n\n", val);
}
// Clear vector
vector_result_t clear_res = vector_clear(vector);
if (clear_res.status != VECTOR_OK) {
printf("Cannot clear vector: %s\n", clear_res.message);
return 1;
} else {
printf("Vector cleared (size should be 0): %zu\n\n", vector_size(vector));
}
// Sort vector in ascending order
int values[] = {5, 10, -9, 3, 1, 0, 4};
for (size_t idx = 0; idx < 7; idx++) {
vector_result_t sort_push_res = vector_push(vector, &values[idx]);
if (sort_push_res.status != VECTOR_OK) {
printf("Error while adding elements: %s\n", sort_push_res.message);
return 1;
}
}
printf("Added new elements. Before sort: ");
sz = vector_size(vector);
for (size_t idx = 0; idx < sz; idx++) {
vector_result_t sort_get_res = vector_get(vector, idx);
if (sort_get_res.status != VECTOR_OK) {
printf("Cannot retrieve vec[%zu]: %s\n", idx, sort_get_res.message);
return 1;
} else {
const int *val = (int*)sort_get_res.value.element;
printf("%d ", *val);
}
}
printf("\n");
vector_result_t sort_asc_res = vector_sort(vector, cmp_int_asc);
if (sort_asc_res.status != VECTOR_OK) {
printf("Cannot sort array: %s\n", sort_asc_res.message);
return 1;
}
printf("After sort in ascending order: ");
for (size_t idx = 0; idx < sz; idx++) {
vector_result_t sort_get_res = vector_get(vector, idx);
if (sort_get_res.status != VECTOR_OK) {
printf("Cannot retrieve vec[%zu]: %s\n", idx, sort_get_res.message);
return 1;
} else {
int *val = (int*)sort_get_res.value.element;
printf("%d ", *val);
}
}
printf("\n");
// Sort vector in descending order
vector_result_t sort_desc_res = vector_sort(vector, cmp_int_desc);
if (sort_desc_res.status != VECTOR_OK) {
printf("Cannot sort array: %s\n", sort_desc_res.message);
return 1;
}
printf("After sort in descending order: ");
for (size_t idx = 0; idx < sz; idx++) {
vector_result_t sort_get_res = vector_get(vector, idx);
if (sort_get_res.status != VECTOR_OK) {
printf("Cannot retrieve vec[%zu]: %s\n", idx, sort_get_res.message);
return 1;
} else {
int *val = (int*)sort_get_res.value.element;
printf("%d ", *val);
}
}
printf("\n\n");
vector_result_t map_clear_res = vector_clear(vector);
if (map_clear_res.status != VECTOR_OK) {
printf("Cannot clear vector: %s\n", map_clear_res.message);
return 1;
}
// Map vector elements
for (size_t idx = 1; idx <= 5; idx++) {
vector_result_t map_push_res = vector_push(vector, &idx);
if (map_push_res.status != VECTOR_OK) {
printf("Error while adding elements: %s\n", map_push_res.message);
return 1;
}
}
sz = vector_size(vector);
// Square vector elements: [1, 2, 3, 4, 5] -> [1, 4, 9, 16, 25]
vector_result_t map_res = vector_map(vector, square, NULL);
if (map_res.status != VECTOR_OK) {
printf("Error while mapping vector: %s\n", map_res.message);
return 1;
}
printf("Squared vector: ");
for (size_t idx = 0; idx < sz; idx++) {
vector_result_t map_get_res = vector_get(vector, idx);
if (map_get_res.status != VECTOR_OK) {
printf("Cannot retrieve vec[%zu]: %s\n", idx, map_get_res.message);
return 1;
} else {
int *val = (int*)map_get_res.value.element;
printf("%d ", *val);
}
}
printf("\n");
// Filter vector elements: [1, 4, 9, 16, 25] -> [4, 16]
vector_result_t filter_res = vector_filter(vector, is_even, NULL);
if (filter_res.status != VECTOR_OK) {
printf("Error while filtering vector: %s\n", filter_res.message);
return 1;
}
sz = vector_size(vector);
printf("Filtered vector: ");
for (size_t idx = 0; idx < sz; idx++) {
vector_result_t map_get_res = vector_get(vector, idx);
if (map_get_res.status != VECTOR_OK) {
printf("Cannot retrieve vec[%zu]: %s\n", idx, map_get_res.message);
return 1;
} else {
int *val = (int*)map_get_res.value.element;
printf("%d ", *val);
}
}
printf("\n");
// Reduce vector elements: [4, 16] -> 20
int sum = 0;
vector_result_t reduce_res = vector_reduce(vector, &sum, adder, NULL);
if (reduce_res.status != VECTOR_OK) {
printf("Error while reducing vector: %s\n", reduce_res.message);
return 1;
}
printf("Sum of vector: %d\n\n", sum);
// Free vector
vector_result_t del_res = vector_destroy(vector);
if (del_res.status != VECTOR_OK) {
printf("Error while destroying the vector: %s\n", del_res.message);
return 1;
}
return 0;
}
int map_usage(void) {
// Create a new map
map_result_t res = map_new();
if (res.status != MAP_OK) {
printf("Error while creating map: %s\n", res.message);
return 1;
}
map_t *map = res.value.map;
// Add some values
const int x = 0xB00B5;
const char *y = "Hello";
map_result_t add_res = map_add(map, "x", (void*)&x);
if (add_res.status != MAP_OK) {
printf("Error while adding elements: %s\n", add_res.message);
return 1;
}
add_res = map_add(map, "y", (void*)y);
if (add_res.status != MAP_OK) {
printf("Error while adding elements: %s\n", add_res.message);
return 1;
}
// Print size and capacity
printf("Map size (should be 2): %zu\n", map_size(map));
printf("Map capacity (should be > 2): %zu\n\n", map_capacity(map));
// Retrieve keys
map_result_t get_res = map_get(map, "x");
if (get_res.status != MAP_OK) {
printf("Cannot retrieve map element 'x': %s\n", get_res.message);
return 1;
} else {
const int *val = (const int*)get_res.value.element;
printf("Key 'x' contains (should be 'B00B5'): %X\n", *val);
}
get_res = map_get(map, "y");
if (get_res.status != MAP_OK) {
printf("Cannot retrieve map element 'y': %s\n", get_res.message);
return 1;
} else {
const char *val = (const char*)get_res.value.element;
printf("Key 'y' contains (should be 'Hello') : %s\n\n", val);
}
// Update key
const int new_x = 0xC0FFEE;
map_result_t up_res = map_add(map, "x", (void*)&new_x);
up_res = map_get(map, "x");
if (get_res.status != MAP_OK) {
printf("Cannot retrieve map element 'x': %s\n", get_res.message);
return 1;
} else {
const int *val = (const int*)up_res.value.element;
printf("Key 'x' (should be updated to 'C0FFEE'): %X\n\n", *val);
}
// Remove an element
map_result_t rm_res = map_remove(map, "y");
if (rm_res.status != MAP_OK) {
printf("Cannot remove map element 'y': %s\n", rm_res.message);
return 1;
} else {
printf("Map element 'y' removed (size should be 1): %zu\n\n", map_size(map));
}
// Clear the map
map_result_t clear_res = map_clear(map);
if (clear_res.status != MAP_OK) {
printf("Cannot clear map: %s\n", clear_res.message);
return 1;
} else {
printf("Map cleared (size should be 0): %zu\n", map_size(map));
}
printf("\n");
// Delete the map
map_result_t del_res = map_destroy(map);
if (del_res.status != MAP_OK) {
printf("Error while destroying the map: %s\n", del_res.message);
return 1;
}
return 0;
}
int bigint_usage(void) {
const char *x_origin = "8036732204560262312865077650774313136023641621894661847778962273940232785242208265819059749867858355";
const char *y_origin = "7078840479830524979114102683681365071561983635405714511439038016617918064981439736383067887133445937";
const size_t x_len = strlen(x_origin);
const size_t y_len = strlen(y_origin);
const size_t large_x_size = x_len * 100 + 1;
const size_t large_y_size = y_len * 100 + 1;
char *large_x = malloc(large_x_size);
char *large_y = malloc(large_y_size);
if (large_x == NULL || large_y == NULL) {
printf("Error while allocating memory for strings\n");
free(large_x);
free(large_y);
return 1;
}
large_x[0] = '\0';
large_y[0] = '\0';
// Concatenate 100 times
for (size_t idx = 0; idx < 100; idx++) {
strcat(large_x, x_origin);
strcat(large_y, y_origin);
}
// Create two big integers from previous strings
bigint_result_t x_res = bigint_from_string(large_x);
if (x_res.status != BIGINT_OK) {
printf("Error while creating big number: %s\n", x_res.message);
return 1;
}
bigint_result_t y_res = bigint_from_string(large_y);
if (x_res.status != BIGINT_OK) {
printf("Error while creating big number: %s\n", x_res.message);
return 1;
}
bigint_t *x = x_res.value.number;
bigint_t *y = y_res.value.number;
// Sum two big integers
bigint_result_t sum_res = bigint_add(x, y);
if (sum_res.status != BIGINT_OK) {
printf("Error while summing two big numbers: %s\n", sum_res.message);
return 1;
}
bigint_t *sum = sum_res.value.number;
// Print result
bigint_printf("Sum result = %B\n", sum);
// Subtract two big integers
bigint_result_t diff_res = bigint_sub(x, y);
if (diff_res.status != BIGINT_OK) {
printf("Error while subtracting two big numbers: %s\n", diff_res.message);
return 1;
}
bigint_t *diff = diff_res.value.number;
// Print result
bigint_printf("difference result = %B\n", diff);
// Multiply two big integers
bigint_result_t prod_res = bigint_prod(x, y);
if (prod_res.status != BIGINT_OK) {
printf("Error while multiplying two big numbers: %s\n", prod_res.message);
return 1;
}
bigint_t *prod = prod_res.value.number;
// Print result
bigint_printf("multiplication result = %B\n", prod);
bigint_t *a = bigint_from_string(x_origin).value.number;
bigint_t *b = bigint_from_string(y_origin).value.number;
// Divide two big integers
bigint_result_t div_res = bigint_divmod(a, b);
if (div_res.status != BIGINT_OK) {
printf("Error while dividing two big numbers: %s\n", div_res.message);
return 1;
}
bigint_t *quotient = div_res.value.division.quotient;
bigint_t *remainder = div_res.value.division.remainder;
// Print result
bigint_printf(
"division result = %B\
\nmod result = %B\n",
quotient, remainder);
// Destroy big numbers and strings
bigint_destroy(x); bigint_destroy(y);
bigint_destroy(a); bigint_destroy(b);
bigint_destroy(sum); bigint_destroy(diff);
bigint_destroy(prod); bigint_destroy(quotient); bigint_destroy(remainder);
free(large_x); free(large_y);
return 0;
}