Added division algorithm (not working yet)

This commit is contained in:
2025-11-13 16:22:56 +01:00
parent 5af5699e66
commit fd07e27337
4 changed files with 330 additions and 5 deletions

View File

@@ -141,7 +141,7 @@ This will compile the library as well as the `usage.c` file and the unit tests.
## Documentation
For additional details about this library (internal design, memory
management, data ownership, etc.) go to the `docs/` folder.
management, data ownership, etc.) go to the [docs folder](/docs).
## Unit tests
Datum provides some unit tests for both the `Vector` and the `Map` data types. To run them, you can issue the following commands:

View File

@@ -29,6 +29,7 @@ static bigint_result_t bigint_karatsuba_base(const bigint_t *x, const bigint_t *
static bigint_result_t bigint_karatsuba(const bigint_t *x, const bigint_t *y);
static bigint_result_t bigint_shift_right(const bigint_t *num, size_t n);
static bigint_result_t bigint_reciprocal(const bigint_t *num, size_t precision);
static bigint_result_t bigint_div(const bigint_t *x, const bigint_t *y);
/**
* bigint_from_int
@@ -179,7 +180,6 @@ bigint_result_t bigint_from_string(const char *string_num) {
int digit = 0;
for (int j = 0; j < chunk_len; j++) {
// digit *= 10 + (string_num[start + j] - '0');
digit = digit * 10 + (string_num[start + j] - '0');
}
@@ -876,6 +876,271 @@ bigint_result_t bigint_prod(const bigint_t *x, const bigint_t *y) {
return result;
}
/**
* bigint_div
* @x: a valid non-null big integer
* @y: a valid non-null big integer
*
* Internal method to compute divisions using Newton-Raphson
* algorithm for reciprocal
*
* Returns a bigint_result_t data type
*/
bigint_result_t bigint_div(const bigint_t *x, const bigint_t *y) {
bigint_result_t result = {0};
bigint_result_t tmp_res = {0};
// Intermediate results
bigint_t *base_result = NULL;
bigint_t *recip = NULL;
bigint_t *q_temp = NULL;
bigint_t *quotient = NULL;
bigint_t *check = NULL;
bigint_t *remainder = NULL;
bigint_t *one = NULL;
bigint_t *new_quotient = NULL;
if (x == NULL || y == NULL) {
result.status = BIGINT_ERR_INVALID;
SET_MSG(result, "Invalid big numbers");
return result;
}
// Check for division by zero
const size_t y_size = vector_size(y->digits);
if (y_size == 0) {
result.status = BIGINT_ERR_DIV_BY_ZERO;
SET_MSG(result, "Division by zero");
return result;
}
if (y_size == 1) {
vector_result_t y_val_res = vector_get(y->digits, 0);
if (y_val_res.status != VECTOR_OK) {
result.status = BIGINT_ERR_INVALID;
COPY_MSG(result, y_val_res.message);
return result;
}
int *y_val = (int*)y_val_res.value.element;
if (*y_val == 0) {
result.status = BIGINT_ERR_DIV_BY_ZERO;
SET_MSG(result, "Division by zero");
return result;
}
}
// If |x| < |y| then result is zero
tmp_res = bigint_compare_abs(x, y);
if (tmp_res.status != BIGINT_OK) { result = tmp_res; return result; }
if (tmp_res.value.compare_status < 0) {
tmp_res = bigint_from_int(0);
if (tmp_res.status != BIGINT_OK) { result = tmp_res; return result; }
result.value.number = tmp_res.value.number;
result.status = BIGINT_OK;
SET_MSG(result, "Division between big integers was successful");
return result;
}
// Use "grade-school division" for small divisors
if (y_size <= 100) {
vector_result_t y_digit_res = vector_get(y->digits, 0);
if (y_digit_res.status != VECTOR_OK) {
result.status = BIGINT_ERR_INVALID;
COPY_MSG(result, y_digit_res.message);
return result;
}
int *y_digit = (int*)y_digit_res.value.element;
// special case: division by 1
if (*y_digit == 1) {
tmp_res = bigint_clone(x);
if (tmp_res.status != BIGINT_OK) { result = tmp_res; return result; }
base_result = tmp_res.value.number;
base_result->is_negative = (x->is_negative != y->is_negative);
result.value.number = base_result;
result.status = BIGINT_OK;
SET_MSG(result, "Division between big integers was successful");
return result;
}
// Single digit division
base_result = malloc(sizeof(bigint_t));
if (base_result == NULL) {
result.status = BIGINT_ERR_ALLOCATE;
SET_MSG(result, "Failed to allocate memory for result");
return result;
}
vector_result_t vec_res = vector_new(vector_size(x->digits), sizeof(int));
if (vec_res.status != VECTOR_OK) {
result.status = BIGINT_ERR_ALLOCATE;
COPY_MSG(result, vec_res.message);
free(base_result);
return result;
}
base_result->digits = vec_res.value.vector;
base_result->is_negative = false;
long long remainder_val = 0;
long long divisor = *y_digit;
for (int idx = vector_size(x->digits) - 1; idx >= 0; idx--) {
vector_result_t x_digit_res = vector_get(x->digits, idx);
if (x_digit_res.status != VECTOR_OK) {
result.status = BIGINT_ERR_INVALID;
COPY_MSG(result, x_digit_res.message);
bigint_destroy(base_result);
return result;
}
int *x_digit = (int*)x_digit_res.value.element;
remainder_val = remainder_val * BIGINT_BASE + *x_digit;
int quotient_digit = remainder_val / divisor;
remainder_val %= divisor;
vector_result_t push_res = vector_push(base_result->digits, &quotient_digit);
if (push_res.status != VECTOR_OK) {
result.status = BIGINT_ERR_INVALID;
COPY_MSG(result, push_res.message);
bigint_destroy(base_result);
return result;
}
}
// Reverse the digits
const size_t rev_size = vector_size(base_result->digits);
for (size_t idx = 0; idx < rev_size / 2; idx++) {
vector_result_t left_res = vector_get(base_result->digits, idx);
vector_result_t right_res = vector_get(base_result->digits, rev_size - 1 - idx);
if (left_res.status != VECTOR_OK || right_res.status != VECTOR_OK) {
result.status = BIGINT_ERR_INVALID;
SET_MSG(result, "Failed to access vector elements");
bigint_destroy(base_result);
return result;
}
int *left = (int*)left_res.value.element;
int *right = (int*)right_res.value.element;
int temp = *left;
// We ignore return status since we already checked that indexes are valid
vector_set(base_result->digits, idx, right);
vector_set(base_result->digits, rev_size - 1 - idx, &temp);
}
base_result->is_negative = (x->is_negative != y->is_negative);
tmp_res = bigint_trim_zeros(base_result);
if (tmp_res.status != BIGINT_OK) {
result = tmp_res;
bigint_destroy(base_result);
return result;
}
result.value.number = base_result;
result.status = BIGINT_OK;
SET_MSG(result, "Division between big integers was successful");
return result;
}
// Otherwise, use Newton-Raphson algorithm
const size_t precision = vector_size(x->digits) + 1;
// Compute reciprocal of y: r = floor(BASE^(2 * precision) / y)
tmp_res = bigint_reciprocal(y, precision);
if (tmp_res.status != BIGINT_OK) { result = tmp_res; goto cleanup; }
recip = tmp_res.value.number;
// Multiply x by reciprocal: x = x * r
tmp_res = bigint_prod(x, recip);
if (tmp_res.status != BIGINT_OK) { result = tmp_res; goto cleanup; }
q_temp = tmp_res.value.number;
// Scale down by BASE^(2 * precision) to get quotient
tmp_res = bigint_shift_right(q_temp, 2 * precision);
if (tmp_res.status != BIGINT_OK) { result = tmp_res; goto cleanup; }
quotient = tmp_res.value.number;
// Adjust if necessary since quotient might be off by 1
tmp_res = bigint_prod(quotient, y);
if (tmp_res.status != BIGINT_OK) { result = tmp_res; goto cleanup; }
check = tmp_res.value.number;
tmp_res = bigint_sub(x, check);
if (tmp_res.status != BIGINT_OK) { result = tmp_res; goto cleanup; }
remainder = tmp_res.value.number;
// If remainder >= y then increment quotient
tmp_res = bigint_compare_abs(remainder, y);
if (tmp_res.status != BIGINT_OK) { result = tmp_res; goto cleanup; }
if (tmp_res.value.compare_status >= 0) {
tmp_res = bigint_from_int(1);
if (tmp_res.status != BIGINT_OK) { result = tmp_res; goto cleanup; }
one = tmp_res.value.number;
tmp_res = bigint_add(quotient, one);
if (tmp_res.status != BIGINT_OK) { result = tmp_res; goto cleanup; }
new_quotient = tmp_res.value.number;
bigint_destroy(quotient);
quotient = new_quotient;
new_quotient = NULL;
}
quotient->is_negative = (x->is_negative != y->is_negative);
tmp_res = bigint_trim_zeros(quotient);
if (tmp_res.status != BIGINT_OK) { result = tmp_res; goto cleanup; }
// Destroy intermediate allocations except for the quotient
bigint_destroy(recip);
bigint_destroy(q_temp);
bigint_destroy(check);
bigint_destroy(remainder);
bigint_destroy(one);
result.value.number = quotient;
result.status = BIGINT_OK;
SET_MSG(result, "Division between big integers was successful");
return result;
cleanup: // Destroy intermediate allocations
if (recip) { bigint_destroy(recip); }
if (q_temp) { bigint_destroy(q_temp); }
if (quotient) { bigint_destroy(quotient); }
if (check) { bigint_destroy(check); }
if (remainder) { bigint_destroy(remainder); }
if (one) { bigint_destroy(one); }
if (new_quotient) { bigint_destroy(new_quotient); }
return result;
}
/**
* bigint_divmod
* @x: a valid non-null big integer
@@ -986,12 +1251,47 @@ cleanup:
return result;
}
/**
* bigint_mod
* @x: a valid non-null big integer
* @y: a valid non-null big integer
*
* Computes @x mod @y
*
* Returns a bigint_result_t data type
*/
bigint_result_t bigint_mod(const bigint_t *x, const bigint_t *y) {
bigint_result_t result = {0};
if (x == NULL || y == NULL) {
result.status = BIGINT_ERR_INVALID;
SET_MSG(result, "Invalid big numbers");
return result;
}
bigint_result_t div_res = bigint_divmod(x, y);
if (div_res.status != BIGINT_OK) { return div_res; }
bigint_t* const quotient = div_res.value.division.quotient;
bigint_t* const remainder = div_res.value.division.remainder;
// Discard quotient
bigint_destroy(quotient);
result.value.number = remainder;
result.status = BIGINT_OK;
SET_MSG(result, "Division between big integers was successful");
return result;
}
/**
* bigint_shift_left
* @num: a non-null big integer
* @n: number of digits to shift
*
* Shift left by @n digits (i.e., multiply by BASE^n)
* Shifts left by @n digits (i.e., multiply by BASE^n)
*
* Returns a bigint_result_t data type
*/
@@ -1734,7 +2034,7 @@ bigint_result_t bigint_print(const bigint_t *number) {
return num_str_res;
}
char *number_str = num_str_res.value.string_num;
char* const number_str = num_str_res.value.string_num;
printf("%s", number_str);
free(number_str);

View File

@@ -53,6 +53,7 @@ bigint_result_t bigint_add(const bigint_t *x, const bigint_t *y);
bigint_result_t bigint_sub(const bigint_t *x, const bigint_t *y);
bigint_result_t bigint_prod(const bigint_t *x, const bigint_t *y);
bigint_result_t bigint_divmod(const bigint_t *x, const bigint_t *y);
bigint_result_t bigint_mod(const bigint_t *x, const bigint_t *y);
bigint_result_t bigint_destroy(bigint_t *number);
bigint_result_t bigint_print(const bigint_t *number);

26
usage.c
View File

@@ -304,7 +304,7 @@ int map_usage() {
}
int bigint_usage() {
// Create a big integer
// Create two big integers
bigint_result_t x_res = bigint_from_string("123456789");
if (x_res.status != BIGINT_OK) {
printf("Error while creating big number: %s\n", x_res.message);
@@ -367,6 +367,30 @@ int bigint_usage() {
bigint_print(prod);
printf("\n");
// Divide two big integers
bigint_t *a = bigint_from_string("4573495456849").value.number;
bigint_t *b = bigint_from_string("4356987654321").value.number;
bigint_result_t div_res = bigint_divmod(a, b);
if (div_res.status != BIGINT_OK) {
printf("Error while dividing two big numbers: %s\n", div_res.message);
return 1;
}
bigint_t *q = div_res.value.division.quotient;
bigint_t *r = div_res.value.division.remainder;
// Print result
printf("a / b = ");
bigint_print(q);
printf("\n");
bigint_print(r);
printf("\n");
bigint_destroy(a); bigint_destroy(b);
bigint_destroy(q); bigint_destroy(r);
bigint_destroy(x); bigint_destroy(y);
bigint_destroy(sum); bigint_destroy(diff); bigint_destroy(prod);